
‭CSE 160 Spring 2025 - Practice Quiz 3 Key‬

‭1. As we have seen in Homework 3, we can store 2D black and white images in a doubly nested‬
‭list (rows and columns) with 0 = white and 255 = black, with our values being integers between‬
‭(and including) 0 and 255. An example of a 4 x 4 pixel image is as follows:‬

‭4x4_image = [‬
‭[1, 25, 90, 10],‬
‭[10, 95, 60, 30],‬
‭[20, 70, 85, 67],‬
‭[40, 45, 68, 56]‬
‭]‬

‭So let's think now about black and white video data! We can think of video data as being a 3D‬
‭pixel grid. Specifically, the black and white pixels in the 3D grids are stored in a triply nested list‬
‭(row, columns, time marker). Let's take a look at an example of a 4x4 pixel video:‬

‭4x4_video = [‬
‭[‬
‭[1, 25, 90, 10],‬
‭[10, 95, 60, 30],‬
‭[20, 70, 85, 67],‬
‭[40, 45, 68, 56]‬
‭],‬
‭[‬
‭[1, 25, 90, 15],‬
‭[10, 95, 60, 30],‬
‭[18, 71, 85, 67],‬
‭[40, 45, 68, 56]‬
‭],‬
‭[‬
‭[1, 25, 90, 20],‬
‭[10, 95, 60, 30],‬
‭[16, 72, 85, 67],‬
‭[40, 45, 68, 56]‬
‭],‬
‭[‬
‭[1, 25, 90, 25],‬
‭[10, 95, 60, 30],‬
‭[14, 73, 85, 67],‬
‭[40, 45, 68, 56]‬
‭]‬

‭]‬



‭Your task is to write a function (‬‭2_last_image‬‭) that‬‭takes in black and white video data (in the‬
‭form of the 3D pixel grids called‬‭video_data‬‭) and‬‭returns the image from the second to last‬
‭frame. Hint: pay attention to the example grids and think about list indexing and range!‬

‭def 2_last_image(video_data):‬
‭2_last = video_data[-2]‬
‭return 2_last‬



‭2. You are given a CSV file tracking the days it has rained and the growth of several plants in‬
‭the following format:‬

‭rain, mint, basil, cypress, vine‬
‭y, 2, 5, 1, 3‬
‭n, 1, 5, 0, 4‬
‭y, 4, 3, 1, 2‬

‭Write a function‬‭that reads in a file in the format‬‭shown above,‬‭prints the number of days it‬
‭rained‬‭, and‬‭returns a dictionary‬‭with the total growth‬‭of each plant in the file. The output for‬
‭the example above should be:‬

‭print(read_plants(file))‬
‭>>> "Rained 2 days"‬
‭>>> {"mint":7,‬

‭"basil":13,‬
‭"cypress": 2,‬
‭"vine":9}‬

‭def read_plants(file):‬
‭plant_file = open(file)‬ ‭# Open the file‬

‭days_rained = 0‬
‭plant_growth = {}‬

‭for line in plant_file:‬ ‭# Read the file line‬‭by line‬
‭# Split the line into columns‬
‭columns = line.split(",")‬

‭# Get the header with the plant names‬
‭if columns[0] == "rain":‬

‭plant_names = columns‬
‭# Get the data for each day‬
‭else:‬

‭if columns[0] == "y":‬ ‭# Count days rained‬
‭days_rained += 1‬

‭# Add plant growth data to dictionary‬
‭for i in range(1, len(columns)):‬

‭if plant_names[i] not in plant_growth:‬
‭plant_growth[plant_names[i]] = 0‬

‭plant_growth[plant_names[i]] += int(columns[i])‬

‭plant_file.close()‬
‭print(f"Rained {days_rained} days")‬
‭return plant_growth‬



‭3. You are given a dictionary as follows:‬

‭gdp = {2023: 27.72, 2020: 21.35, 2021: 23.68, 2022: 26.01}‬
‭years = [2020, 2021, 2022, 2023]‬

‭a. Give the print output of the following line of code‬

‭print(gdp[years[1]])‬

‭Output:‬
‭23.68‬

‭b. Why would the following lines of code‬‭not‬‭work‬‭for printing out the values in the dictionary‬
‭ordered by year?‬

‭for year in gdp:‬
‭print(gdp[year])‬

‭Answer:‬
‭Dictionaries are unordered, so values will not be printed in order of ascending year.‬

‭Also okay: The values will be printed in the order they were added, not order of ascending year.‬

‭c. Without changing the body of the for loop, edit the first line above so that it would correctly‬
‭print out the values ordered by year:‬

‭for year in years:‬
‭print(gdp[year])‬


