
 Full Name: Answer Key

 Email Address (UW Net ID): @uw.edu

 Section:

 -

 CSE 160 Winter 2024 - Final Exam

 Instructions:
 ● You have 110 minutes to complete this exam.
 ● The exam is closed book , including no calculators, computers, phones, watches or other electronics.
 ● You are allowed a single sheet of notes for yourself.
 ● We also provide a syntax reference sheet.
 ● Turn in all sheets of this exam, together and in the same order when you are finished.
 ● When time has been called, you must put down your pencil and stop writing.

 ○ Points will be deducted if you are still writing after time has been called.
 ● You may only use parts and features of Python that have been covered in class up to this point.
 ● You may ask questions by raising your hand, and a TA will come over to you.

 Good luck!

 Question Topic(s)

 Question 1 Expressions, data types

 Question 2 Lists, File I/O

 Question 3 Nested lists, dictionaries

 Question 4 Testing

 Question 5 Tracebacks, errors

 Question 6 Tracebacks, errors

 Question 7 Classes, methods/functions

 1) For each row in the following table evaluate the expressions in the first column, all of which result in a value
 being assigned to the variable x. In the type(x) column, write what the type of that value is. In the last column,
 write the value that we'd see if we ran print(x) , i.e., show what value gets stored in x . If there is an error, write
 Error in both columns.

 Expression type(x) What does x evaluate to?

 x = ("Hello" + "World") * 2

 str "HelloWorldHelloWorld"

 x = print("not an integer?")

 NoneType None

 x = "one" + "one" == "two"

 bool False

 x = 3 * 3 / 3

 float 3.0

 x = sorted("python")

 list ['n', 'o', 'h', 't', 'y', 'p']

 x = "python"[::-1]

 str "nothyp"

 a = {'a', 'b', 'c'}
 z = {'x', 'y', 'z'}
 x = a & z set {} (empty set)

 d = {"cat": ["meow", "purr"],
 "dog": ["bark", "woof"]}
 l = ["cat", "dog"]
 x = d[l[-1]][-1] + d[l[0]][0]

 str "woofmeow"

 2) Suppose you are given a CSV file with the following headers:

 section, enrollment, median_score, avg_score

 Write a function that takes the filename as a parameter, reads the file, and then returns a dictionary where the
 keys are the class section and the values are a dictionary of that section's statistics. You may assume that all
 numbers in the data are integers and that the csv module has been imported. For example:

 class_stats("stats.csv")

 where the stats.csv file contains

 section,enrollment,median_score,avg_score
 AB,15,72,77
 AC,8,82,83

 should return the dictionary

 {
 "AB": { "enrollment": 15, "median_score": 72, "avg_score": 72 },
 "AC": { "enrollment": 8, "median_score": 82, "avg_score": 83 }

 }

 Write your solution below this function header:

 def class_stats(filename):
 file = open(filename)
 reader = csv.DictReader(file)
 result = {}
 for row in reader:

 section = row['section']
 result[section] = {}
 for key in row:

 if key != 'section':
 result[section][key] = int(row[key])

 file.close()
 return result

 3) Color images are represented as a grid of pixels (like the grayscale images from HW3), but each pixel
 actually has three values. These values correspond to the amount of red, green, and blue in that location of the
 image. For instance, a 4-pixel by 4-pixel image could be represented as follows:

 image = [
 [[0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3]],
 [[4, 4, 4], [5, 5, 5], [6, 6, 6], [7, 7, 7]],
 [[8, 8, 8], [9, 9, 9], [10, 10, 10], [11, 11, 11]],
 [[12, 12, 12], [13, 13, 13], [14, 14, 14], [15, 15, 15]]

]

 The first element in the innermost lists represents the amount of red, the second represents the amount of
 blue, and the third represents the amount of green.

 Write a function that accepts the row and column of a pixel and returns a dictionary of the color components.
 The keys in the returned dictionary should be the colors red, blue, and green and the values are the respective
 quantities of the color.

 For example:
 pixel_color_info(image, 1, 3) should return {'red': 7, 'blue': 7, 'green': 7}
 pixel_color_info(image, 2, 2) should return {'red': 10, 'blue': 10, 'green': 10}

 def pixel_color_info(image, row, col):
 return {

 'red': image[row][col][0],
 'green': image[row][col][1],
 'blue': image[row][col][2]

 }

 4) A student is writing tests for the HW4 function euclidean_distance . For a refresher, the docstring and
 code is below:

 """ Calculate the Euclidean distance between two data points.
 Arguments:

 point1: a non-empty list of floats representing a data point
 point2: a non-empty list of floats representing a data point

 Returns: the Euclidean distance between the two data points

 Example:
 >>> euclidean_distance([1.1, 1, 1, 0.5], [4, 3.14, 2, 1])
 3.7735394525564456

 """
 total = 0
 for i in range(len(point1)):

 total += (point1[i] - point2[i]) ** 2
 return math.sqrt(total)

 The tests that they have written contain errors or have made some incorrect assumptions. Find what they are
 and write a new test to fix the issue. (For the sake of hand-writing time, you may abbreviate
 " euclidean_distance" as " euc_dist ".)

 Note: Each test has a different issue. In order to get full credit for this question, you must list different
 issues for each test; writing the same issue for more than one test will not earn full points.

 # Test 1
 assert euclidean_distance(4, 5) == 1

 Test 1's Issue New Test 1

 Arguments are not lists assert euclidean_distance([4], [5]) == 1

 # Test 2
 assert euclidean_distance([1, 1], [1, 0]) == 2

 Test 2's Issue New Test 2

 Output number is not correct assert euclidean_distance([1,1], [1,0]) == 1

 # Test 3
 assert euclidean_distance([1, 0, 1], [0, 1]) == 3

 Test 3's Issue New Test 3

 List lengths are mismatched assert euclidean_distance([1, 0, 1], [0, 1,
 0]) == 3

 # Test 4
 assert euclidean_distance([1.1, 1, 1, .5], [4, 3.14, 2, 1]) == 3.7735

 Test 4's Issue New Test 4

 Need to use math.isclose for
 floats

 assert math.isclose(euclidean_distance(
 [1.1, 1, 1, .5],
 [4, 3.14, 2, 1]),

 3.7735)

 5) While working on HW3, you receive this error message:

 Traceback (most recent call last):
 File "...homework3\blur_image.py", line 266, in <module>

 test_blur()
 File "...homework3\blur_image.py", line 261, in test_blur

 assert blur(test_grid) == blurgrid
 File "...homework3\blur_image.py", line 243, in blur

 blurred_pixel = average_of_surrounding(pixel_grid, i, j)
 File "...homework3\blur_image.py", line 203, in average_of_surrounding

 pixel_sum += get_pixel_at(pixel_grid, row, col)
 File "...homework3\blur_image.py", line 142, in get_pixel_at

 return pixel_grid[i][j]
 IndexError: list index out of range

 1. Which of the following HW3 functions should you look at first to solve this error? Circle one .

 a. test_blur()

 b. average_of_surrounding(pixel_grid, i, j)

 c. get_pixel_at(pixel_grid, row, col)

 2. What does IndexError mean? (in other words, how might this error have occurred?)

 It means that the list (in this case pixel_grid) does not have the index requested (in this case i or j)

 3. In two lines or less, write code that would produce the same error.

 [1, 2, 3][4]

 6) While working on HW5, you receive this error message.

 Traceback (most recent call last):
 File "...homework5\social_network_tests.py", line 132, in <module>
 main_test()

 File "...homework5\social_network_tests.py", line 85, in test_num_map_to_sorted_list
 assert_equals(['c', 'a', 'd', 'e', 'b'],

 File "...homework5\utils.py", line 59, in assert_equals
 assert check_approx_equals(expected, received), \

 AssertionError: Failed: Expected ['c', 'a', 'd', 'e', 'b'],
 but received ['b', 'e', 'd', 'a', 'c']

 1. Which of the following HW5 functions should you look at first to fix the error? Circle one .

 a. num_common_friends_map(graph, user)

 b. num_map_to_sorted_list(map_with_number_vals)

 c. rec_number_common_friends(graph, user)

 d. main_test()

 e. assert_equals(expected, received)

 f. check_approx_equals(expected, received)

 g. recommend_by_influence(graph, user)

 2. What does AssertionError mean?

 It means that the condition given to an assert statement evaluated to False.

 3. Give one plausible reason why this error might have occurred (Hint: what is the difference between the
 expected and received output?)

 The order of the elements returned from num_map_to_sorted_list is incorrect. Most likely forgot to
 reverse the resulting sort.

 7) Consider the following class for all parts of question 7:

 class RNA():
 '''
 A class that represents an RNA molecule.
 The RNA class stores its name and sequence on construction.
 Member functions compute useful data about an RNA instance.
 '''

 def __init__(self, name, sequence):
 '''
 Creates an RNA sequence with a given name and sequence, both strings.
 '''
 self.name = name
 self.sequence = sequence

 def __len__(self):
 '''
 Returns the number of bases in the RNA sequence

 Example:
 >>> r = RNA("test", "ACGUACGU")
 >>> len(r)
 8
 '''
 return len(self.sequence)

 def __getitem__(self, index):
 '''
 Returns the base nucleotide at the given index. This enables support
 for "subscripting"--i.e., list-like brackets notation.

 Examples:
 >>> r = RNA("test", "ACGUACGU")
 >>> r[4]
 'A'
 >>> r['A']
 Traceback (most recent call last):

 ...
 AssertionError: Index must be an integer
 '''
 assert type(item) is int, "Index must be an integer"
 return self.sequence[index]

 <RNA class continues on next page>

 <RNA class continued from previous page>

 def aa_to_codon(self):
 '''
 Returns dictionary mapping of amino acids to a list of their possible
 RNA sequence codons.
 '''
 aa_map = {

 "Leu": ["UUA", "UUG", "CUU", "CUC", "CUA", "CUG"],
 "Val": ["GUU", "GUC", "GUA", "GUG"],
 "Met": ["AUG"],
 "Pro": ["CCU", "CCC", "CCA", "CCG"],
 "Ala": ["GCU", "GCC", "GCA", "GCG"],
 "Trp": ["UGG"],
 "Arg": ["CGU", "CGC", "CGA", "CGG", "AGA", "AGG"],
 "Gly": ["GGU", "GGC", "GGA", "GGG"],

 }
 return aa_map

 <End of RNA class>

 The following questions (Question 7 Parts A through D) ask you to write the bodies of some missing function.
 Pay close attention to what each method's documentation expects and what methods the class already
 provides (above).

 7 Part A) Write the body of the following RNA class method, adhering to the description and behavior defined
 in its docstring.

 def get_percent_GC_content(self):
 '''
 Returns percent of 'G' and 'C' bases in the sequence.

 Examples:
 >>> r1 = RNA("test1", "UAGUAGGUUG")
 >>> r1.get_percent_GC_content()
 40.0
 >>> r2 = RNA("test2", "UAAUAUUUUG")
 >>> r2.get_percent_GC_content()
 10.0
 '''
 count = 0
 total_bases = len(self)
 for base in self.sequence:

 if base == 'G' or base == 'C':
 count += 1

 gc_content = (count / total_bases) * 100
 return gc_content

 7 Part B) Write the body of the following RNA class method, adhering to the description and behavior defined
 in its docstring.

 def get_reverse_complement(self):
 '''
 Returns the reverse complement of the RNA sequence. The compliment is
 calculated as swapping A <-> U and C <-> G. The complement is then
 reversed.

 Examples:
 >>> r1 = RNA("test1", "AUGCAGC")
 >>> r1.get_reverse_complement()
 'GCUGCAU'
 >>> r2 = RNA("test2", "GCUGCAU")
 >>> r2.get_reverse_complement()
 'AUGCAGC'
 '''
 complement_dict = {'A': 'U', 'U': 'A', 'C': 'G', 'G': 'C'}
 complement = ''
 for base in self.sequence:

 complement_base = complement_dict[base]
 complement += complement_base

 reverse_complement = complement[::-1]
 return reverse_complement

 7 Part C) Write the body of the following RNA class method, adhering to the description and behavior defined
 in its docstring.

 def translate_rna(self):
 '''
 Translates an RNA sequence to the correct amino acid chain. The RNA
 sequence should be read in consecutive, non-overlapping 3-base codons,
 starting with index 0.

 Returns a list containing the three letter amino acid codes.

 Examples:
 >>> r1 = RNA("test1", "AUGGCCA")
 >>> r1.translate_rna()
 ['Met', 'Ala']
 >>> r2 = RNA("test2", "UGGGAUGAGGUAGUAGGUU")
 >>> r2.translate_rna()
 ['Trp', 'Val', 'Val', 'Gly']
 '''
 n = len(self.sequence)-1
 aa_chain = []
 for i in range(0, n, 3):

 # set codon variable to slice three nucleotides per codon
 codon = self.sequence[i:i+3]
 for aa, codons in self.aa_to_codon().items():

 if codon in codons:
 aa_chain.append(aa)

 return aa_chain

 7 Part D) Write the body of the following RNA class method, adhering to the description and behavior defined
 in its docstring.

 def distance(self, other):
 '''
 Calculates a simplified distance between two RNA sequences. For this
 problem, we define distance as the absolute value of the difference in
 sequence lengths plus the number of mismatched nucleotides. (In real
 RNA computations, the distance calculation is much more complex.)

 Examples:
 >>> r1 = RNA("seq1", "ACGT")
 >>> r2 = RNA("seq2", "TAGC")
 >>> r1.distance(r2)
 3
 >>> r3 = RNA("seq3", "ACG")
 >>> r4 = RNA("seq4", "ACGTA")
 >>> r3.distance(r4)
 2
 >>> r4 = RNA("seq3", "CCCAAA")
 >>> r5 = RNA("seq4", "AAA")
 >>> r4.distance(r5)
 6
 '''
 distance = abs(len(self) - len(other))
 min_len = min(len(self), len(other))
 for i in range(min_len):

 if self[i] != other[i]:
 distance += 1

 return distance

 Extra Credit (1pt):

 Choose one (or both, but you will only receive a maximum of 1 point of extra credit):

 1) Write a poem, limerick, haiku, acrostic, epic, rhyming couplet, or any other literary form about your
 experience in CSE 160 this quarter.

 2) What was your favorite assignment in this class? Why is it your favorite?

