
Full Name:

Email Address (UW Net ID): @uw.edu

Section:

CSE 160 Autumn 2024 - Final Exam

Instructions:
● You have 110 minutes to complete this exam.
● The exam is closed book, including no calculators, computers, phones, watches or other electronics.
● You are allowed a single sheet of notes for yourself.
● We also provide a syntax reference sheet.
● Turn in all sheets of this exam, together and in the same order when you are finished.
● Be sure to read the entire question prompt before answering.
● When time has been called, you must put down your pencil and stop writing.

○ Points will be deducted if you are still writing after time has been called.
● You may only use parts and features of Python that have been covered in class up to this point.
● You may ask questions by raising your hand, and a TA will come over to you.

Good luck!

Question Topic

Question 1 Errors

Question 2 Files and CSV

Question 3 Data Structures

Question 4 Functions

Question 5 Graphs and Testing

Question 6 Classes

A

Question 1) For each of the following snippets of code, draw a line from the snippet to the TypeError message
that it would result in. An example of code that would cause each specific error is also shown for your
information. You do not have to match the specific line of code.

data = [
{"test_score": 89, "study_strategy": "flash cards"},
{"test_score": 70, "study_strategy": "flash cards"},
{"test_score": 85, "study_strategy": "active recall"}

]
headers = set()
for row in data:

for key, val in row.items():
if 0 >= val >= 100:

headers.add(key)
else:

headers.add(val)
Matches with 3
__

1

TypeError: 'int' object is not
subscriptable

(not subscriptable means not able
to be indexed or accessed with
brackets)

Example: 1[1]

animals = ["husky", "duck", "cougar"]
first_letters = {}
for word in range(len(animals)):

letter = word[0]
if letter not in first_letters:

first_letters[letter] = 0
first_letters[letter] += 1

Matches with 1
__

2

TypeError: list indices must be
integers or slices, not float

Example: [1, 2][1.5]

race_finishes = [8, 9, 11]
teams = ["A", "B", "C"]
leaderboard = {}
for time in race_finishes:

for team in time:
leaderboard[team] = time

Matches with 4
__

3
TypeError: '>=' not supported
between instances of 'int' and 'str'

Example: "2" >= 1

race_finishes = [8.1, 9.5, 10.0]
teams = ["A", "B", "C"]
leaderboard = {}
for time in race_finishes:

for team in teams:
leaderboard[team] = race_finishes[time]

Matches with 2

4
TypeError: 'int' object is not
iterable

(not iterable means unable to be
looped over)

Example: for i in 3:

1

Question 2) For this problem, you will write a function called parse_grocery_list that takes a single
string argument that is the path to a CSV file and returns a dictionary. An example of the contents of the file is
on the left, and an example of the returned dictionary is on the right:

code,category,name,amount,price
1234,fruit,apple,5,2
4321,fruit,banana,3,1
5678,vegetable,carrot,6,1
8765,fruit,orange,1,2
1357,vegetable,broccoli,3,1

{
1234: {

"category": "fruit",
"name": "apple",
"amount": 5,
"price": 2

},
...

}

Each line represents a single grocery store item. The code value is expected to be a unique integer (no two
items will ever have the same code). And the others (category, name, amount, and price) are non-unique.

Notes and hints:

● csv.DictReader takes a file (not a file path!) and returns a list of dictionaries.
● code, amount, and price should be converted to integers.

import csv
def parse_grocery_list(filepath):

Write your solution to question 2 here!

d = {}
with open(filepath) as f:

reader = csv.DictReader(f)
for row in reader:

d[int(row["code"])] = {
"name": row["name"],
"price": int(row["price"]),
"amount": int(row["amount"]),
"category": row["category"]

}
return d

2

Question 3) Given the following descriptions of data, determine a data structure that best represents it from
the choices given, and write down the Python representation of the data.

Example 1: given "A groceries list for someone who wants to buy apples, bananas, and eggs," you would
choose a list and write ["apples", "bananas", "eggs"]

A. A 2D pixel grid that looks like the following:

2 1

1 0

Circle one: list of lists list of dictionaries

dictionary with lists as values dictionary of dictionaries

Write the Python data representation: [[2, 1], [1, 0]]

B. A survey on favorite pizza topping combinations: 2 people liked pineapples and olives, 1 person liked
pineapples, 1 person liked olives, and no one liked either.

likes_olives dislikes_olive
s

likes_pineapple 2 1

dislikes_pineapple 1 0

Circle one: list of lists list of dictionaries

dictionary with lists as values dictionary of dictionaries

Write the Python data representation: {“likes_pineapple”: {“likes_olives”: 2, “dislikes_olives”: 1}
“dislikes_pineapple”: {“likes_olives”: 2, “dislikes_olives”: 1}}

C. Two people were interviewed on how often they brush or floss their teeth daily. It does not matter who
the people are.

brush floss

2 1

1 0

Circle one: list of lists list of dictionaries

dictionary with lists as values dictionary of dictionaries

Two possible answers:
[{“Brush”: 2, “Floss”: 1}, {“Brush”: 1, “Floss”: 0}]

Write the Python data representation: OR {“Brush”: [2, 1], “Floss”: [1, 0]}
3

Question 4) Consider these three functions and then for each of the function calls below, write what the
function would return

def mystery(a, b):
n = 0
for i in range(-1 * b):

n += a
return n

def another(m, n):
for i in range(len(m) + 1):

m.append(n)

def final(j, k):
n = mystery(j, k)
if n > 0:

m = []
another(m, k)
return m

else:
return k - n

Function Call Return

final(-2, -3) 2

final(-3, 2) 3

final(3, -1) [-1]

4

Question 5) Think back to Homework 5, where you were asked to write code to find various combinations of
friends in a graph. You're now asked to write some tests for those functions!

Consider the graph on the right.

For each of the tests below, fill in the missing input or
expected result, as appropriate.

As reference, the function docstrings are included as a
separate page.

Function Input Expected Result

friends 'B' {'A', 'E', 'C'}

friends_of_friends 'A' {'D', 'F', 'E'}

num_common_friends_map 'B' {'D': 2, 'F': 1}

5

Question 6) Read the class written on the following two pages. It is missing some necessary code, indicated
by underscores (_____). Using the code already written, the docstrings, and the print output (see separate
page), fill in the blank lines of code to finish the class. Hint: read through the entire class before starting to fill in
the missing code!

An example usage of this class, with the matching output, is given as a separate page.

class FlyLab:

"""

Grow your own flies! The FlyLab class starts a new home for your

flies which you can multiply by feeding them food.

"""

def __init__(self, flies):

"""

Initializes the fields for the FlyLab class. The number of

flies to start out must be specified whenever an instance is

created.

"""

self.flies = flies

self.budget = 0

self.food = []

self.prices = {"compost": 1, "syrup": 2, "fruit": 5}

def add_budget(self, amount):

"""Adds money to the budget and prints out a message."""

self.budget += amount

print("You added", amount, "dollars to your fly lab! You now

have", self.budget, "dollars")

6

def buy_food(self, item):

"""

Adds a food to the FlyLab while subtracting from the budget,

if the food is able to be bought. If the food does not exist

in the prices dictionary or there is not enough money in

the budget, prints out an appropriate message.

"""

if item not in self.prices:

print("Your requested item does not exist")

elif self.budget < self.prices[item]:

print("You don't have enough money to buy this")

else:

self.food.append(item)

self.budget -= self.prices[item]

print("You added one", item, "to your fly lab! Your

current food inventory is:", self.food)

def feed_flies(self):

"""

Increases the number of flies by a factor of two while

subtracting the first food added. If there is no food, prints

out a message

"""

if len(self.food) > 0:

eaten_food = self.food.pop(0)

self.flies *= 2

print("You fed your flies", eaten_food)

print("Your flies multiplied and you now have",

self.flies, "flies!")

else:

print("You don't have enough food.")

7

Extra Credit (1pt):

Now that you know programming, write a poem or limerick about how your life will be forever changed.🙂

8

Function documentation strings for Question 5:

friends(user):
"""Returns a set of the friends of the given user in the given graph."""

friends_of_friends(user):
"""
Find and return the friends of friends of the given user.

Arguments:
user: a unique identifier for a node (user) in the graph

Returns: a set containing the names of all of the friends of
friends of the user. The set should not contain the user itself
or their immediate friends.
"""

num_common_friends_map(user):
"""
Returns a map (a dictionary), mapping a person to the number of friends
that person has in common with the given user. The map keys are the
people who have at least one friend in common with the given user,
and are neither the given user nor one of the given user's friends.

Example graph:
- "X" and "Y" have two friends in common
- "X" and "Z" have one friend in common
- "X" and "W" have one friend in common
- "X" and "V" have no friends in common
- "X" is friends with "W" (but not with "Y" or "Z")

Here is what should be returned:
number_of_common_friends_map("X") => { 'Y':2, 'Z':1 }

Arguments:
user: a unique identifier for a node (user) in the graph

Returns: a dictionary mapping each person to the number of (non-zero)
friends they have in common with the user
"""

Prompts and example output for Question 6:

An example usage of the class is listed below. Each line of code (indicated by >>>) was run one line at a time
and the output (if there was any) was printed immediately below it.

>>> my_flies = FlyLab(100)

>>> my_flies.add_budget(7)

You added 7 dollars to your fly lab! You now have 7 dollars

>>> my_flies.feed_flies()

You don't have enough food

>>> my_flies.buy_food("fruit")

You added one fruit to your fly lab! Your current food inventory is: ['fruit']

>>> my_flies.buy_food("caviar")

Your requested item doesn’t exist

>>> my_flies.buy_food("syrup")

You added one syrup to your fly lab! Your current food inventory is: ['fruit', 'syrup']

>>> my_flies.buy_food("compost")

You don’t have enough money to buy this

>>> my_flies.feed_flies()

You fed your flies fruit

Your flies multiplied and you now have 200 flies!

>>> my_flies.feed_flies()

You fed your flies syrup

Your flies multiplied and you now have 400 flies!

