
Multiple-Choice Questions

Which of the following best describes the purpose of assertions in Python?

A) To ensure the code runs faster.

B) To check conditions that should hold true while running a program.

C) To print values for debugging purposes.

D) To stop program execution after every loop.

What is the main difference between black-box testing and white-box testing?

A) Black-box testing relies on understanding the implementation details, while

white-box testing focuses on testing behavior from a specification perspective.

B) Black-box testing ignores the implementation, focusing on input-output

behavior, while white-box testing tests based on the code's internal logic.

C) White-box testing is limited to unit tests, while black-box testing applies to

integration tests.

D) There is no difference; they are used interchangeably.

Which type of test would be best for evaluating a function that performs complex
mathematical calculations requiring high precision?

A) Performance tests

B) Unit tests

C) Boundary tests

D) Security tests

Coding Practice Problem:

Problem Description: You are given a function calculate_area(shape, dimension1,
dimension2=None). The function calculates the area of a given shape. It supports:

● Circle: dimension1 is the radius.
● Rectangle: dimension1 is the length, and dimension2 is the width.
● Square: dimension1 is the side length.

Task:

● Write tests for this function using black-box testing. You do not know the implementation
details, so you must rely solely on the input-output behavior described above.

Assumptions:

● The function will raise an exception if an invalid shape is provided.

(Implementation for the calculate_area function on the next page)

Here's the implementation for the calculate_area function, which can handle circles,
rectangles, and squares based on the input parameters:

Answers:

1. B;

2. B;

3. B

Example answer:

def test_calculate_area():

Test circle with radius 3 (expected area: 3.14159 * 3^2)

assert round(calculate_area("circle", 3), 2) == 28.27, "Expected area for
circle with radius 3 is 28.27"

Test rectangle with length 4 and width 5 (expected area: 4 * 5)

assert calculate_area("rectangle", 4, 5) == 20, "Expected area for
rectangle with length 4 and width 5 is 20"

Test square with side length 6 (expected area: 6^2)

assert calculate_area("square", 6) == 36, "Expected area for square with
side length 6 is 36"

Test invalid shape

try:
calculate_area("triangle", 3, 4)
assert False, "Expected an exception for invalid shape"

except ValueError:
pass # Expected behavior

test_calculate_area()

