Introduction to **Data Programming**

CSE 160 University of Washington Winter 2022 Andrew S. Fitz Gibbon

Agenda for Today

- What is this course?
- Course logistics
- Python!

Welcome to CSE 160!

CSE 160 teaches core programming concepts with an emphasis on real data manipulation tasks from science, engineering, and business

Goal by the end of the quarter: Given a data source and a problem description, you can independently write a complete, useful program to solve the problem

Aside: Is CSE 160 the course for you?

- See email sent to class
- For students with no prior programming experience:
 - CSE 142 CS1, in Java, pre-req for CSE 143
 - CSE 160 CS1, in Python, (offered 21au & 22wi)
- For students with some programming experience
 - CSE 163 CS2, in Python, (offered 22wi & 22sp)
 - Can be taken after CSE 160 or CSE 142
 - First few weeks cover the basics of Python
- You will not get credit for CSE 160 if you have already taken CSE 143 (or any 300 level or higher CSE course)
- CSE 160 is a challenging (and fun!) course

Course staff

- Lecturer:
 - Andrew S. Fitz Gibbon
- TAs:
 - Melissa Birchfield
 - Emily Caitlin Chang
 - David Benjamin Chang
 - Hannah F Cheung
 - Wisdom Oluchi Ikezogwo
 - Brian Kazuki Liao
 - Joely Jene Nelson
 - Tyler Phuc Bao Nguyen
 - Amanda C Ong
 - Lilly Xu
 - Brian Zhu
- Ask us for help!

Learning Objectives

- Computational problem-solving
 - Writing a program will become your "go-to" solution for data analysis tasks
- Basic Python proficiency
 - Including experience with relevant libraries for data manipulation, scientific computing, and visualization.
- Experience working with real datasets
 - astronomy, biology, linguistics, oceanography, open government, social networks, and more.
 - You will see that these are easy to process with a program, and that doing so yields insight.

What this course is not

- A "skills course" in Python
 - ...though you will become proficient in the basics of the Python programming language
 - ...and you will gain experience with some important Python libraries
- A data analysis / "data science" / data visualization course
 - There will be very little statistics knowledge assumed or taught
- A "big data" course
 - Datasets will all fit comfortably in memory
 - No parallel programming

-- Roger Barga, Microsoft Research

H-MARCH 5TH 2010 Economist.com The right to eat cats and doc

O'REILLY"

Edited by Toby Se & Jeff Hammer

"The greatest minds of my generation are trying to figure out how to make people click on ads"
-- Jeff Hammerbacher, co-founder, Cloudera

All of science is reducing to computational data manipulation

Old model: "Query the world" (Data acquisition coupled to a specific hypothesis)

New model: "Download the world" (Data acquisition supports many hypotheses)

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
- Biology: lab automation, high-throughput sequencing,
- Oceanography: high-resolution models, cheap sensors, satellites

Example: Assessing treatment efficacy

	Α	В	С	D	E	F	G	Н		J
1	fu_2wk	fu_4wk	fu_8wk	fu_12wk	fu_16wk	fu_20wk	fu_24wk	total4type_fu	clinic_zip	pt_zip
2	1	3	4	7	9	9	9	12	98405	98405
3	2	4	6	7	8	8	8	8	98405	98403
4	0	Zip code of clinic							98405	98445
5	3	7 Humber of follow ups 5						98405	98332	
6	0	within 16 weeks after 0 0						0	00105	9 8405
7	2	tre	atment e	enrollmer	nt.	2	2	Zip code o	3402	
8	1	2	5	6	8	10	10	14	98405	98418
9	1	1	2	2	2	2	2	2	98499	98406
10	0	0	1	2	2	2	2	6	98405	98404
11	0	0	0	0	0	0	0	0	98405	98402
12	1	1	2	2	4	4	4	4	98405	98405
13	1	Question: Does the distance between the							98404	98404
14	2								98499	98498
15	0	patient's home and clinic influence the number							98499	98445
16	1	of follow ups, and therefore treatment efficacy?							98499	98405
17	1	of Johow ups, and therefore treatment efficacy!								98498
18	1	3	3	3	3	3	3	3	98499	98499
19	1	1	4	5	7	7	7	7	98499	98371
13			7	3	,	•	,		30433	10

Python program to assess treatment efficacy

```
# This program reads an Excel spreadsheet whose penultimate
# and antepenultimate columns are zip codes.
# It adds a new last column for the distance between those zip
# codes, and outputs in CSV (comma-separated values) format.
# Call the program with two numeric values: the first and last
# row to include.
# The output contains the column headers and those rows.
# Libraries to use
import random
import sys
                # library for working with Excel spreadsheets
import xlrd
import time
from gdapi import GoogleDirections
# No key needed if few gueries
gd = GoogleDirections('dummy-Google-key')
wb = xlrd.open workbook('mhip zip eScience 121611a.xls')
sheet = wb.sheet by index(0)
# User input: first row to process, first row not to process
first row = max(int(sys.argv[1]), 2)
row_limit = min(int(sys.argv[2]+1), sheet.nrows)
def comma separated(lst):
 return ",".join([str(s) for s in lst])
```

```
headers = sheet.row values(0) + ["distance"]
print comma separated(headers)
for rownum in range(first row,row limit):
  row = sheet.row values(rownum)
  (zip1, zip2) = row[-3:-1]
  if zip1 and zip2:
    # Clean the data
    zip1 = str(int(zip1))
    zip2 = str(int(zip2))
    row[-3:-1] = [zip1, zip2]
    # Compute the distance via Google Maps
      distance = gd.query(zip1,zip2).distance
    except:
      print >> sys.stderr, "Error computing distance:", zip1, zip2
      distance = ""
   # Print the row with the distance
   print comma separated(row + [distance])
   # Avoid too many Google queries in rapid succession
   time.sleep(random.random()+0.5)
```

23 lines of executable code!

Course logistics

- Website: http://www.cs.washington.edu/cse160
 - See the website for all administrative details
- Homework 0 due Friday
 - Preliminary Survey and Ed Board intro
 - due Wednesday
- Questions? asfg@cs.washington.edu

How to succeed

- No prerequisites
- **Non**-predictors for success:
 - Past programming experience
 - Enthusiasm for games or computers
- Programming and data analysis are challenging
- Every one of you can succeed
 - There is no such thing as a "born programmer"
 - Work hard
 - Follow directions
 - Be methodical
 - Think before you act
 - Try on your own, then ask for help
 - Start early

Me (Andrew S. Fitz Gibbon) first name nick name

- Undergrade at Earlham College: ugrad research in HPC and parallel programming education
- Taught @ UW since 2019
- Also work at Google as a Developer Advocate. Previously software engineering at Amazon.
- Have taught computer science or programming to people of almost all ages.

Introductions on Ed Board

- Name
- Major
- Hometown
- Interesting Fact or what I did over break.

