Agenda for Today

• What is this course?
• Course logistics
• Python!
Welcome to CSE 160!

CSE 160 teaches **core programming concepts** with an emphasis on **real data manipulation tasks** from science, engineering, and business.

Goal by the end of the quarter: Given a **data source** and a **problem description**, you can independently write a complete, useful program to **solve the problem**.
Aside: Is CSE 160 the course for you?

• See email sent to class
• For students with no prior programming experience:
 – CSE 142 – CS1, in Java, pre-req for CSE 143
 – CSE 160 – CS1, in Python, (offered 21au & 22wi)
• For students with some programming experience
 – CSE 163 – CS2, in Python, (offered 22wi & 22sp)
 • Can be taken after CSE 160 or CSE 142
 • First few weeks cover the basics of Python
• You will not get credit for CSE 160 if you have already taken CSE 143 (or any 300 level or higher CSE course)
• CSE 160 is a challenging (and fun!) course
Course staff

• Lecturer:
 – Andrew S. Fitz Gibbon

• TAs:
 – Melissa Birchfield
 – Emily Caitlin Chang
 – David Benjamin Chang
 – Hannah F Cheung
 – Wisdom Oluchi Ikezogwo
 – Brian Kazuki Liao
 – Joely Jene Nelson
 – Tyler Phuc Bao Nguyen
 – Amanda C Ong
 – Lilly Xu
 – Brian Zhu

• Ask us for help!
Learning Objectives

• Computational problem-solving
 – Writing a program will become your “go-to” solution for data analysis tasks

• Basic Python proficiency
 – Including experience with relevant libraries for data manipulation, scientific computing, and visualization.

• Experience working with real datasets
 – astronomy, biology, linguistics, oceanography, open government, social networks, and more.
 – You will see that these are easy to process with a program, and that doing so yields insight.
What this course is not

• A “skills course” in Python
 – ...though you will become proficient in the basics of the Python programming language
 – ...and you will gain experience with some important Python libraries

• A data analysis / “data science” / data visualization course
 – There will be very little statistics knowledge assumed or taught

• A “big data” course
 – Datasets will all fit comfortably in memory
 – No parallel programming
“It’s a great time to be a data geek.”
-- Roger Barga, Microsoft Research

“The greatest minds of my generation are trying to figure out how to make people click on ads”
-- Jeff Hammerbacher, co-founder, Cloudera
All of science is reducing to computational data manipulation

Old model: “Query the world” *(Data acquisition coupled to a specific hypothesis)*

New model: “Download the world” *(Data acquisition supports many hypotheses)*

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
- Biology: lab automation, high-throughput sequencing,
- Oceanography: high-resolution models, cheap sensors, satellites

Slide from Bill Howe, eScience Institute
Example: Assessing treatment efficacy

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fu_2wk</td>
<td>fu_4wk</td>
<td>fu_8wk</td>
<td>fu_12wk</td>
<td>fu_16wk</td>
<td>fu_20wk</td>
<td>fu_24wk</td>
<td>total4type_fu</td>
<td>clinic_zip</td>
<td>pt_zip</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>98405</td>
<td>98405</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>98405</td>
<td>98403</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98405</td>
<td>98445</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>98405</td>
<td>98332</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98405</td>
<td>98405</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>98406</td>
<td>98402</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>98405</td>
<td>98418</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>98499</td>
<td>98406</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>98405</td>
<td>98404</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98405</td>
<td>98402</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>98405</td>
<td>98405</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98404</td>
<td>98404</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98499</td>
<td>98498</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98499</td>
<td>98445</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98499</td>
<td>98405</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98499</td>
<td>98498</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>98499</td>
<td>98499</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>98499</td>
<td>98371</td>
</tr>
</tbody>
</table>

number of follow ups within 16 weeks after treatment enrollment.

Question: Does the distance between the patient’s home and clinic influence the number of follow ups, and therefore treatment efficacy?
Python program to assess treatment efficacy

This program reads an Excel spreadsheet whose penultimate
and antepenultimate columns are zip codes.
It adds a new last column for the distance between those zip
codes, and outputs in CSV (comma-separated values) format.
Call the program with two numeric values: the first and last
row to include.
The output contains the column headers and those rows.

Libraries to use
import random
import sys
import xlrd # library for working with Excel spreadsheets
import time
from gdapi import GoogleDirections

No key needed if few queries
gd = GoogleDirections('dummy-Google-key')

wb = xlrd.open_workbook('mhip_zip_eScience_121611a.xls')
sheet = wb.sheet_by_index(0)

User input: first row to process, first row not to process
first_row = max(int(sys.argv[1]), 2)
row_limit = min(int(sys.argv[2])+1, sheet.nrows)

headers = sheet.row_values(0) + ['"distance"']
print comma_separated(headers)

for rownum in range(first_row,row_limit):
 row = sheet.row_values(rownum)
 (zip1, zip2) = row[-3:-1]
 if zip1 and zip2:
 # Clean the data
 zip1 = str(int(zip1))
 zip2 = str(int(zip2))
 row[-3:-1] = [zip1, zip2]
 # Compute the distance via Google Maps
 try:
 distance = gd.query(zip1,zip2).distance
 except:
 print >> sys.stderr, "Error computing distance: ", zip1, zip2
 distance = ""
 # Print the row with the distance
 print comma_separated(row + [distance])

Avoid too many Google queries in rapid succession
time.sleep(random.random()+0.5)

def comma_separated(lst):
 return ",".join([str(s) for s in lst])
Course logistics

• Website: http://www.cs.washington.edu/cse160
 – See the website for all administrative details

• Homework 0 - due Friday
 – Preliminary Survey and Ed Board intro
 • due Wednesday

• Questions? asfg@cs.washington.edu
How to succeed

• No prerequisites
• **No**n-predictors for success:
 – Past programming experience
 – Enthusiasm for games or computers
• Programming and data analysis are challenging
• Every one of you can succeed
 – There is no such thing as a “born programmer”
 – Work hard
 – Follow directions
 – Be methodical
 – *Think* before you act
 – Try on your own, then ask for help
 – Start early
Me (Andrew S. Fitz Gibbon)

- Undergraduate at Earlham College: ugrad research in HPC and parallel programming education
- Taught @ UW since 2019
- Also work at Google as a Developer Advocate. Previously software engineering at Amazon.
- Have taught computer science or programming to people of almost all ages.
Introductions on Ed Board

- Name
- Major
- Hometown
- Interesting Fact or what I did over break.