
11/17/22, 12:15 AM

6/10

Q1 Neighbors
1 Point

Given the graph in Problem 1a, after it is completed, what will the following expression

return:

practice_graph.neighbors("A")

EXPLANATION

Technically it returns a dict_keyiterator, that we often wrap in a call to list() to convert it

into a list or in a call to set() to convert it into a set.

Q2 Best Friend
1 Point

Given the completed graph shown in Problem 1a, what is the best friend recommendation

for node F based on the "recommend by number of common friends" algorithm.

a data structure containing "B" and "C"

a data structure containing ("A", "B") and ("A", "C")

a data structure containing ("A", "B"), ("A", "C"), ("B", "A"), and ("C", "A")

a data structure containing "B", "C", "D", "E", and "F"

B and E (tied)

C

A, B, and E (tied)

C & D (tied)

7/10

EXPLANATION

B has two friends in common with F (C & D). A and E have one friend each in common

with F. Thus B is the better recommendation based on this algorithm. C and D also

have one friend in common with F, but they are already friends with F so the algorithm

will not return them as possibilities.

Q3 Friends of Friends
1 Point

Given the complete Romeo and Juliet graph, what does this expression evaluate to:

friends_of_friends(rj, "Juliet")

Q4 Common Friends
1 Point

Given the complete Romeo and Juliet graph, what does this expression evaluate to:

common_friends(rj, "Romeo", "Paris")

B

A

['Friar Laurence', 'Romeo', 'Tybalt', 'Capulet'] with the elements in any order

{'Friar Laurence', 'Romeo', 'Tybalt', 'Capulet'} with the elements in any order

{'Mercutio', 'Paris', 'Escalus', 'Benvolio', 'Montague'} with the elements in any order

['Mercutio', 'Paris', 'Escalus', 'Benvolio', 'Montague'] with the elements in any order

{'Mercutio', 'Paris', 'Escalus', 'Friar Laurence', 'Romeo', 'Benvolio', 'Montague', 'T

with the elements in any order



['Mercutio', 'Paris', 'Escalus', 'Friar Laurence', 'Romeo', 'Benvolio', 'Montague', 'T

with the elements in any order





8/10

Q5 Number Common Friends
1 Point

Given the complete Romeo and Juliet graph, what does this expression evaluate to:

num_common_friends_map(rj, "Paris")

EXPLANATION

 Note that only people who have at least one friend in common with Paris will be

listed. Immediate friends of Paris will not be listed (so no Mercutio, Escalus or

Capulet). This is a dictionary, so order of elements is not guaranteed.

Q6 Recommend by Common Friends
1 Point

Given the complete Romeo and Juliet graph, what does this expression evaluate to:

recs_by_common_friends(rj, "Juliet")

'Mercutio'

('Mercutio')

['Mercutio']

{'Mercutio'}

['Romeo', 'Montague', 'Tybalt', 'Juliet']

{'Montague': 1, 'Tybalt': 1, 'Romeo': 1, 'Juliet': 1} with the elements in any

order



{'Montague': 1, 'Tybalt': 1, 'Juliet': 1} with the elements in any order

{'Romeo', 'Montague', 'Tybalt', 'Juliet'} with the elements in any order

{'Tybalt': 2, 'Romeo': 1, 'Juliet': 1} with the elements in any order

{'Montague': 2, 'Tybalt': 2, 'Romeo': 2, 'Juliet': 2} with the elements in any

order





9/10

EXPLANATION

 Each of these people have only one friend in common with Juliet, but the answer

must be a list and it must be in sorted in alphabetical order.

Q7 Influence Map
2 Points

Given the complete Romeo and Juliet graph, what does this expression evaluate to:

influence_map(rj, "Paris")

EXPLANATION

 The friends of Paris are Capulet, Escalus and Mercutio. Thus these are the only three

people who will contribute to the influence score for each person. Mercutio is the

pickiest about his friends, thus he has the biggest influence (0.33). Capulet and Paris

both have more friends (4 each) so their influence contribution is smaller (0.25). Only

friends_of_friends of Paris are candidates for recommending as new friends for Paris,

so only they will be listed in this dictionary. Romeo has only Mercutio in common with

{'Benvolio', 'Escalus', 'Mercutio', 'Montague', 'Paris'} with the elements in

any order



['Benvolio', 'Mercutio', 'Montague', 'Escalus', 'Paris']

['Escalus', 'Benvolio', 'Paris', 'Mercutio', 'Montague']

['Benvolio', 'Escalus', 'Mercutio', 'Paris']

{'Mercutio', 'Montague', 'Benvolio', 'Montague'} with the elements in any order

['Mercutio', 'Montague', 'Benvolio', 'Escalus', 'Paris']

{'Mercutio', 'Paris', 'Escalus','Benvolio', 'Montague', 'Capulet'} with the

elements in any order



['Benvolio', 'Escalus', 'Mercutio', 'Montague', 'Paris']

['Benvolio', 'Escalus', 'Mercutio', 'Montague']

{'Montague': 0.25, 'Tybalt': 0.25, 'Romeo': 0.3333333333333333, 'Juliet': 0.25 }
 in any order.

10/10

y y y y

Paris. Mercutio has three friends, so his contribution to Romeo's influence score is

0.33. Montague has only Escalus in common with Paris. Escalus has four friends, so

his contribution to Montague's influence score is 0.25. Tybalt and Juliet have only

Capulet in common with Paris. Since Capulet has four friends, his contribution to

Tybalt and to Juliet are 0.25 each. Please work out the Mercutio example in the assert

statements in the code you were given in social_network.py. That example is slightly

more complex since Montague receives contributions from both Romeo (0.2) and

Escalus (0.25) . Similarly, Capulet receives contributions from both Escalus (0.25) and

Paris (0.33).

Q8 Recommend by Influence
2 Points

Given the complete Romeo and Juliet graph, what does this expression evaluate to:

recommend_by_influence(rj, "Paris")

EXPLANATION

 This must be a list and it must consist of only these values in this exact order. Romeo

comes first with the highest influence score (at 0.33), but the other three (all tied at

0.25) must be listed in alphabetical sorted order by name.

['Romeo', 'Juliet', 'Montague', 'Tybalt']

