
Data Abstraction

Rob Thompson

UW CSE 160

Winter 2021

1

Two types of abstraction

Abstraction: Ignoring/hiding some aspects of a thing
• In programming, ignore everything except the specification or

interface
• The program designer decides which details to hide and to expose

Procedural abstraction:
• Define a procedure/function specification
• Hide implementation details

Data abstraction:
• Define what the datatype represents
• Define how to create, query, and modify
• Hide implementation details of representation and of operations

– Also called “encapsulation” or “information hiding”

2

Review: Procedural Abstraction

def abs(x):

if x < 0:

return -1 * x

else:

return 1 * x

def abs(x):

if x < 0:

return -x

else:

return x

def abs(x):

if x < 0:

result = -x

else:

result = x

return result

def abs(x):

return math.sqrt(x * x)

3

We only need to know how to USE abs.
We do not need to know how abs is IMPLEMENTED.

Review:
Using the Graph class in networkx

import networkx as nx

g = nx.Graph()

module
name

alias

from networkx import Graph, DiGraph

g = Graph()

g.add_node(1)

g.add_node(2)

g.add_node(3)

g.add_edge(1, 2)

g.add_edge(2, 3)

print(g.nodes())

print(g.edges())

print(list(g.neighbors(2)))

Graph and DiGraph are now
available in the global namespace

4

Representing a graph

• A graph consists of:
– nodes/vertices

– edges among the nodes

• Representations:
– Set of edge pairs

• (a, a), (a, b), (a, c), (b, c), (c, b)

– For each node, a list of neighbors
• { a: [a, b, c], b: [c], c: [b] }

– Matrix with boolean for each entry

a

b c

a b c

a ✓ ✓ ✓

b ✓

c ✓ 5

def read_words(filename):

"""Return dictionary mapping each word in filename to its frequency."""

wordfile = open(filename)

word_list = wordfile.read().split()

wordfile.close()

wordcounts_dict = {}

for word in word_list:

count = wordcounts_dict.setdefault(word, 0)

wordcounts_dict[word] = count + 1

return wordcounts_dict

def get_count(wordcounts_dict, word):

"""Return count of the word in the dictionary. """

return wordcounts_dict.get(word, 0)

def topk(wordcounts_dict, k=10):

"""Return list of (count, word) tuples of the top k most frequent words."""

counts_with_words = [(c, w) for (w, c) in wordcounts_dict.items()]

counts_with_words.sort(reverse=True)

return counts_with_words[0:k]

def total_words(wordcounts_dict):

"""Return the total number of words."""

return sum(wordcounts_dict.values())

Text analysis module
(group of related functions)
representation = dictionary

client program to compute top 5:

wc_dict = read_words(filename)

result = topk(wc_dict, 5)

6

Aside: setdefault

def read_words(filename):

"""Given a filename, return a dictionary mapping each word

in filename to its frequency in the file"""

wordfile = open(filename)

worddata = wordfile.read()

word_list = worddata.split()

wordfile.close()

wordcounts_dict = {}

for word in word_list:

if word in wordcounts_dict:

wordcounts_dict[word] = wordcounts_dict[word] + 1

else:

wordcounts_dict[word] = 1

return wordcounts_dict

7

This “default” pattern is
so common, there is a
special method for it.

setdefault

def read_words(filename):

"""Given a filename, return a dictionary mapping each

word in filename to its frequency in the file"""

wordfile = open(filename)

worddata = wordfile.read()

word_list = worddata.split()

wordfile.close()

wordcounts_dict = {}

for word in word_list:

count = wordcounts_dict.setdefault(word, 0)

wordcounts_dict[word] = count + 1

return wordcounts_dict

8

This “default” pattern is
so common, there is a
special method for it.

setdefault

for word in word_list:

if word in wordcounts_dict:

wordcounts_dict[word] = wordcounts_dict[word] + 1

else:

wordcounts_dict[word] = 1

VS:

for word in word_list:

count = wordcounts_dict.setdefault(word, 0)

wordcounts_dict[word] = count + 1

setdefault(key[, default])
• If key is in the dictionary, return its value.
• If key is NOT present, insert key with a value of default, and return default.
• If default is not specified, the value None is used.

9

get

def get_count(wordcounts_dict, word):

"""Return count of the word in the dictionary. """

if word in wordcounts_dict:

return wordcounts_dict[word]

else:

return 0

VS:

def get_count(wordcounts_dict, word):

"""Return count of the word in the dictionary. """

return wordcounts_dict.get(word, 0)

get(key[, default])

• Return the value for key if key is in the dictionary, else default.
• If default is not given, it defaults to None, so that this method never raises a KeyError

See in CSE 160 Syntax examples:
https://courses.cs.washington.edu/courses/cse160/21wi/computing/syntax_examples.html

10

https://courses.cs.washington.edu/courses/cse160/21wi/computing/syntax_examples.html

Problems with the implementation

• The wc_dict dictionary is exposed to the client:
the client might corrupt or misuse it.

• If we change our implementation (say, to use a list of
tuples), it may break the client program.

We prefer to
– Hide the implementation details from the client
– Collect the data and functions together into one unit

client program to compute top 5:

wc_dict = read_words(filename)

result = topk(wc_dict, 5)

11

Datatypes and Classes

• A class creates a namespace for:
– Variables to hold the data
– Functions to create, query, and modify

• Each function defined in the class is called a method
– Takes “self” (a value of the class type) as the first argument

• A class defines a datatype
– An object is a value of that type
– Comparison to other types:

• y = 22

– Type of y is int, value of y is 22

• g = nx.Graph()

– Type of g is Graph, value of g is the object that g is bound to
– Type is the class, value is an object also known as an instantiation or

instance of that type

12

def read_words(filename):

"""Return dictionary mapping each word in filename to its frequency."""

wordfile = open(filename)

word_list = wordfile.read().split()

wordfile.close()

wordcounts_dict = {}

for word in word_list:

count = wordcounts_dict.setdefault(word, 0)

wordcounts_dict[word] = count + 1

return wordcounts_dict

def get_count(wordcounts_dict, word):

"""Return count of the word in the dictionary. """

return wordcounts_dict.get(word, 0)

def topk(wordcounts_dict, k=10):

"""Return list of (count, word) tuples of the top k most frequent words."""

counts_with_words = [(c, w) for (w, c) in wordcounts_dict.items()]

counts_with_words.sort(reverse=True)

return counts_with_words[0:k]

def total_words(wordcounts_dict):

"""Return the total number of words."""

return sum(wordcounts_dict.values())

Text analysis module
(group of related functions)
representation = dictionary

client program to compute top 5:

wc_dict = read_words(filename)

result = topk(wc_dict, 5)

13

class WordCounts:

"""Represents the words in a file."""

Internal representation:

variable wordcounts_dict is a dictionary mapping a word its frequency

def read_words(self, filename):

"""Populate a WordCounts object from the given file"""

word_list = open(filename).read().split()

self.wordcounts_dict = {}

for w in word_list:

self.wordcounts_dict.setdefault(w, 0)

self.wordcounts_dict[w] += 1

def get_count(self, word):

"""Return the count of the given word"""

return self.wordcounts_dict.get(word, 0)

def topk(self, k=10):

"""Return a list of the top k most frequent words in order"""

scores_and_words = [(c,w) for (w,c) in self.wordcounts_dict.items()]

scores_and_words.sort(reverse=True)

return score_and_words[0:k]

def total_words(self):

"""Return the total number of words in the file"""

return sum(self.wordcounts_dict.values())

Each function in a class is called a method.
Its first argument is of the type of the class.

Text analysis,
as a class

Defines a class
(a datatype)
named
WordCounts

Modifies a
WordCounts
object

Queries a
WordCounts
object

read_words does
not return a value;
it mutates self

The type of self
is WordCounts

wordcounts_dict

read_words

get_count

topk

total_words

The namespace of a
WordCounts object:

dict

fn
fn

fn fn

client program to compute top 5:

wc = WordCounts()

wc.read_words(filename)

result = wc.topk(5)

topk takes
2 arguments

The type of wc is
WordCounts

14

client program to compute top 5:

wc = WordCounts()

wc.read_words(filename)

result = wc.topk(5)

result = WordCounts.topk(wc, 5)

A namespace,
like a module
(the name of
the class)

A function that takes
two arguments

A value of type
WordCounts Two

equivalent
calls

Weird constructor: it
does not do any work

You have to call a
mutator immediately

afterward

15

But no one
does it

this way!
Use the first
approach!

Class with constructor
class WordCounts:

"""Represents the words in a file."""

Internal representation:

variable wordcounts_dict is a dictionary mapping a word its frequency

def __init__(self, filename):

"""Create a WordCounts object from the given file"""

words = open(filename).read().split()

self.wordcounts_dict = {}

for w in words:

self.wordcounts_dict.setdefault(w, 0)

self.wordcounts_dict[w] += 1

def get_count(self, word):

"""Return the count of the given word"""

return self.wordcounts_dict.get(word, 0)

def topk(self, k=10):

"""Return a list of the top k most frequent words in order"""

scores_and_words = [(c,w) for (w,c) in self.wordcounts_dict.items()]

scores_and_words.sort(reverse=True)

return scores_and_words[0:k]

def total_words(self):

"""Return the total number of words in the file"""

return sum([c for (w,c) in self.wordcounts_dict])

client program to compute top 5:

wc = WordCounts(filename)

result = wc.topk(5)

16

__init__ is a
special function, a

“constructor”

The constructor now needs a parameter

Alternate
implementation

class WordCounts:

"""Represents the words in a file."""

Internal representation:

variable words_list is a list of the words in the file

def __init__(self, filename):

"""Create a WordCounts object from the given file"""

self.words_list = open(filename).read().split()

def get_count(self, word):

"""Return the count of the given word"""

return self.words_list.count(word)

def topk(self, k=10):

"""Return a list of the top k most frequent words in order"""

scores_with_words = [(self.get_count(w), w) for w in set(self.words_list)]

scores_with_words.sort(reverse=True)

return scores_with_words[0:k]

def total_words(self):

"""Return the total number of words

in the file"""

return len(self.words_list)

client program to compute top 5:

wc = WordCounts(filename)

result = wc.topk(5)

Exact same program!

words_list

__init__

get_count

topk

total_words

The namespace of a
WordCounts object:

fn
fn

fn fn

list

17

