Graphs

Rob Thompson
UW CSE 160
Winter 2021

A graph contains nodes and edges

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months preceding the interviow. Numbers under the figure count the number of times that pattern was observed (Le. we found 63 pairs unconnected to anyone else).

+ 350 students in no romantic and/or sexual relationship
From: "Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks", American Journal of Sociology, by Peter Bearman of (Columbia), James Moody (Ohio State), and Katherine Stovel (U. of Washington);

Graphs

- A graph can be thought of as either:
- a collection of edges
- Each edge represents some relationship
- for each node, a collection of neighbors
- The neighbors are those connected by an edge

Operations on a graph

Creation:

- Create an empty graph

Querying:

- Look up a node: Does it exist? What are its neighbors?
- Look up an edge (= a pair of nodes): does it exist? (You know the nodes it connects.)
- Iterate through the nodes or edges

Modification:

- Add/remove a node
- Add/remove an edge

networkx Graph Library

- Used in Homework 5
- Included in the Anaconda Distribution
- https://networkx.github.io/documentation/stable/tutorial.html
import networkx as nx
$\mathrm{g}=\mathrm{nx}$. Graph() \#create an empty graph g.add_node(1) \#add one node to graph g.add_node (2)
g.add_edge (1, 2) \#add one edge print(g.nodes()) \#print all nodes print(g.edges()) \#print all edges

Note: It is also o.k. to just add an edge before you add the individual nodes; the nodes will be added for you in that case.
import networkx as nx
import matplotlib.pyplot as plt

```
g = nx.Graph() # Creates a graph
g.add_edge(1, 2) # Adds edge from node 1 to node 2
g.add_edge (1, 3)
g.add_node(4) # Adds node 4
print("Edges:", g.edges())
print("Nodes:", g.nodes())
print("Neighbors of node 1:", list(g.neighbors(1)))
assert len(g.nodes()) == 4
assert len(g.edges()) == 2
nx.draw_networkx(g) # Draw the graph
plt.show()
    # Show the graph
```

