
File I/O

Rob Thompson

UW CSE 160

Winter 2021

1

File Input and Output

• As a programmer, when would one use a file?

• As a programmer, what does one do with a file?

2

Files store information
when a program is not running

Important operations:

• open a file

• close a file

• read data

• write data

3

Files and filenames

• A file object represents data on your disk drive

– It is an object in your Python program that you create

– Can read from it and write to it in your program

• A filename (usually a string) states where to find
the data on your disk drive

– Can be used to find/create a file

– Examples of filenames:
• Linux/Mac:"/home/efg/class/160/lectures/file_io.pptx"

• Windows:"C:\Users\efg\My Documents\cute_dog.jpg"

• Linux/Mac: "homework3/images/Husky.png"

• "Husky.png"

4

Two types of filenames

An Absolute filename gives a specific location on disk:
• "/home/efg/class/160/20au/lectures/file_io.pptx"

• "C:\Users\efg\My Documents\homework3\images\Husky.png"

– Starts with “/” (Unix) or “C:\” (Windows)
– Warning: code will fail to find the file if you move or rename files or

run your program on a different computer

A Relative filename gives a location relative to the current working
directory:
• "lectures/file_io.pptx"

• "images\Husky.png"

• "data\test-small.fastq"

– Warning: code will fail to find the file unless you run your program
from a directory that contains the given contents

• A relative filename is usually a better choice

5

Examples

Linux/Mac: These could all refer to the same file:

"/home/efg/class/160/homework3/images/Husky.png"

"homework3/images/Husky.png"

"images/Husky.png"

"Husky.png“

Windows: These could all refer to the same file:

"C:\Users\efg\My Documents\class\160\homework3\images\Husky.png"

"homework3\images\Husky.png"

"images\Husky.png"

"Husky.png"

6

Aside: “Current Working Directory” in Python

Current Working Directory - the directory from which you ran
Python

To determine it from a Python program:

import os

print("The current working directory is", os.getcwd())

Might print:

'/Users/johndoe/Documents’

7

os stands for
“operating system”

Opening a file in python

To open a file for reading:
Open takes a filename and returns a file object.

This fails if the file cannot be found & opened.

myfile = open("datafile.dat")

• Or equivalently:
myfile = open("datafile.dat", "r")

To open a file for writing:
Will create datafile.dat if it does not already
exist, if datafile.dat already exists, then it
will be OVERWRITTEN

myfile = open("datafile.dat", "w")

If datafile.dat already exists, then we will
append what we write to the end of that file

myfile = open("datafile.dat", "a")

8

By default, file is
opened for reading

Reading a file in python

Open takes a filename and returns a file object.

This fails if the file cannot be found & opened.

myfile = open("datafile.dat")

Approach 1: Process one line at a time

for line_of_text in myfile:

… process line_of_text

Approach 2: Process entire file at once

all_data_as_a_big_string = myfile.read()

myfile.close() # close the file when done reading

Assumption: file is a sequence of lines
Where does Python expect to find this file (note the relative pathname)?

9

Simple Reading a file Example

Reads in file one line at a time and

prints the contents of the file.

in_file = "student_info.txt"

myfile = open(in_file)

for line_of_text in myfile:

print(line_of_text)

myfile.close()

10

Reading a file Example

Count the number of words in a text file

in_file = "thesis.txt"

myfile = open(in_file)

num_words = 0

for line_of_text in myfile:

word_list = line_of_text.split()

num_words += len(word_list)

myfile.close()

print("Total words in file: ", num_words)

11

Reading a file multiple times
You can iterate over a list as many times as
you like:

mylist = [3, 1, 4, 1, 5, 9]

for elt in mylist:

… process elt

for elt in mylist:

… process elt

Iterating over a file uses it up:

myfile = open("datafile.dat")

for line_of_text in myfile:

… process line_of_text

for line_of_text in myfile:

… process line_of_text

How to read a file multiple times?

Solution 1: Read into a list, then iterate over
it
myfile = open("datafile.dat")

mylines = []

for line_of_text in myfile:

mylines.append(line_of_text)

for line_of_text in mylines:

… process line_of_text

for line_of_text in mylines:

… process line_of_text

Solution 2: Re-create the file object
(slower, but a better choice if the file does not
fit in memory)
myfile = open("datafile.dat")

for line_of_text in myfile:

… process line_of_text

myfile = open("datafile.dat")

for line_of_text in myfile:

… process line_of_text

12

This loop body will
never be executed!

In general, try to avoid reading a file more than on time. Reading files is slow.

Writing to a file in python

Replaces any existing file of this name

myfile = open("output.dat", "w")

Just like printing output

myfile.write("a bunch of data")

myfile.write("a line of text\n")

myfile.write(4)

myfile.write(str(4))

myfile.close()

open for Writing
(no argument, or
"r", for Reading)

“\n” means
end of line
(Newline)

Incorrect; results in:
TypeError: expected a character buffer object

Correct. Argument
must be a string

13

close when done
with all writing

Count the number of words in a text file and

make a list of all the words in the file

num_words = 0

word_list = []

silly_file = open("silly.txt", "r")

for line in silly_file:

print(line, end="")

what should come next? (Hint: use split())

silly_file.close()

print("Total words in file: ", num_words)

14

15

num_words = 0

word_list = []

silly_file = open("silly.txt", "r")

for line in silly_file:

new_words = line.split()

word_list.extend(new_words)

num_words = num_words + len(new_words)

silly_file.close()

print("Total word count:", num_words)

print(word_list)

This is a silly file.

Here is some more silly text.

And even another silly line.

The fourth silly line.

16

