Data Abstraction

Ruth Anderson
UW CSE 160
Autumn 2021

Two types of abstraction

Abstraction: Ignoring/hiding some aspects of a
thing

* |n programming, ignore everything except the
specification or interface

* The program designer decides which details to
hide and to expose

1) Procedural abstraction - Already covered
2) Data abstraction - Topic for today!

#¥ Review: Procedural Abstraction

* Define a function specification that describes how
to use the function

— Aside: a function is sometimes called a “procedure”
* Hide implementation details from the user/client
* Examples:

— You know how to USE the functions sorted and abs

— You do not know how these functions are
IMPLEMENTED

Review: Procedural Abstraction

def abs(x): def abs(x):
if x < 0: if x < 0:
return -1 * x result = -x
else: else:
return 1 * x result = x

return result

def abs(x):
if x < O: def abs(x):
return -x return math.sqrt(x * x)
else:
return x We only need to know how to USE abs.

We do not need to know how abs is IMPLEMENTED.

4

Data Abstraction

Define what the datatype represents
Define how to create, query, and modify

Hide implementation details of representation and of
operations from the user/client

Examples:

— You know how to USE the datatypes int, float, 1ist,
dict, set
— You do not know how these are actually stored in
memory or how operations on them are IMPLEMENTED
* Howis .sort () implemented on lists?
e Howis .items () implemented for dictionaries?
* Howis .remove () implemented for sets?

Types and Classes

* Builtintypes like int, £float, 1list, dict,
set are examples of Data Abstraction

* Python provides a way for users to essentially
create their own types by defininga class

—You can then create instances of that
class or objects

* You have already used a class in the
networkx module!

Review:
Using the Graph class in networkx

import networkx as nx Aside: With this way of importing you need to use: nx.
' T ' — before referring to something in networkx.
module alias With the approach below, you do not.
name

g = nx.Graph ()

from networkx import Graph, DiGraph Graphand DiGraph are the
names of classes

g = Graph()

g.add node (1) Good style for Python class names
g. add:node (2) use CapWords (sometimes called
g.add node (3) CamelCase)

g.add edge(1l, 2)

g.add edge (2, 3) This is a client program that uses
print (g.nodes()) the Graph class.

print (g.edges()) The client does not need to know

print (list(g.neighbors (2))) how the class is implemented.
7

https://www.python.org/dev/peps/pep-0008/#class-names

Constructors, Instances & Objects

Graph and DiGraph are the
names of classes

from networkx import Graph, DiGraph

g = Graph()
g.add node (1) Graph () is the constructor for the
g.add edge(1l, 2) Graph class

g is an instance of the Graph class
We also say that g is a Graph
object

;rint(g.nodes())
print (g.edges())

rj and practice graph are
also instances of the Graph class or
Graph objects

rj = Graph()
rj.add node ("Romeo")

practice graph = Graph/()
practice graph.add node ("A")

Methods and State

from networkx import Graph, DiGraph
add node (),add edge(),

g = Graph () nodes () and edges () are
g.add node (1) methods of the Graph class
g.add edge(l, 2)

The nodes and edges of Graph

;rint (g.nodes ()) object g are also known as its state.

print (g.edges())
Each object has different state.

rj = Graph () rj and practice graph each
rj.add node ("Romeo") have their own nodes and edges
o with can be different from the
nodes and edges in other objects.

practice graph = Graph()
practice graph.add node ("A")

Haven’t | Seen This Before?

from networkx import Graph, DiGraph

|

Similar to how we called set () or

g.add node (1)
g.add edge(1l, 2)

;rint(g.nodes())_

dict () constructors

Modifies Graph object, similar to how we
called . sort () oninstances of 1ists

print(g.edges())

rj = Graph()
rj.add node ("Rome

practice graph =

Queries Graph object, similar to how we
called . items () oninstances of dicts

o")

Graph ()

practice graph.add node ("A")

10

Representing a graph

* A graph consists of:
— nodes/vertices
— edges among the nodes

* If you were implementing the Graph class, how
would you store the nodes and the edges?
— Would you use 1ists, sets, dicts?

— How would you implement methods like:
* edges ()

* neighbors (a)

11

Representing a graph

* A graph consists of:
— nodes/vertices
— edges among the nodes

* Possible Representations:
— set of nodes and set of edges

* nodesare {a, b, c}
e edgesare { (a, b), (b, c)}

— dict with node for key, a 1ist of neighbors as value
* {a: [b], b: [a, c], c: [b]}

12

TEXt ana|YSiS mOdUIe # client program to compute top 5:

(group of related functions) wc_dict = read_worc_is (filename)
representation = dictionary result = topk(wc_dict, 5)

def read words(filename) :
"""Return dictionary mapping each word in filename to its frequency."""
wordfile = open (filename)
word list = wordfile.read() .split()
wordfile.close ()
wordcounts_dict = {}
for word in word list:
count = wordcounts_dict.setdefault (word, 0)
wordcounts_dict[word] = count + 1

return wordcounts_dict

def get count (wordcounts_dict, word):
"""Return count of the word in the dictionary. """
return wordcounts_dict.get (word, 0)

def topk (wordcounts dict, k=10):
"""Return list of (count, word) tuples of the top k most frequent words."""
counts _with words = [(c, w) for (w, c) in wordcounts_dict.items()]
counts_with words.sort (reverse=True)

return counts _with words[0:k]

def total words (wordcounts_dict):
"""Return the total number of words."""

return sum(wordcounts dict.values())

13

Aside: setdefault

def read words(filename) :

"""Given a filename, return a dictionary mapping each word
in filename to its frequency in the file"""

wordfile = open(filename)
worddata = wordfile.read()
word list = worddata.split()

This “default” pattern is

wordfile.close() so common, there is a

wordcounts dict = {} special method for it.

for word in word list:
if word in wordcounts dict:
wordcounts dict[word] = wordcounts dict[word] + 1
else:

wordcounts dict[word] =

return wordcounts_dict

14

setdefault

def read words (filename) :

"""Given a filename, return a dictionary mapping each
word in filename to its frequency in the file"""

wordfile = open(filename)
worddata = wordfile.read()
word list = worddata.split()

wordfile.close() This “default” pattern is
so common, there is a

wordcounts_dlct = {} special method for it.

for word in word;list:

count = wordcounts dict.setdefault (word, O0)

wordcounts dict[word] = count + 1

return wordcounts_dict

15

setdefault

for word in word_list:

if word in wordcounts dict:

wordcounts dict[word] = wordcounts dict[word] + 1
else:

wordcounts dict[word] =1

VS:

for word in word 1list:
count = wordcounts _dict.setdefault (word, O0)
wordcounts dict[word] = count + 1

setdefault (key|, default])

If key is in the dictionary, return its value.
If key is NOT present, insert key with a value of default, and return default.
If default is not specified, the value None is used.

16

get

def get count(wordcounts_dict, word):
"""Return count of the word in the dictionary. """
if word in wordcounts _dict:
return wordcounts dict[word]
else:
return 0
VS:

def get count (wordcounts dict, word):
"""Return count of the word in the dictionary. """
return wordcounts dict.get (word, O0)

get (keyl, default])
* Return the value for key if key is in the dictionary, else default.
* If default is not given, it defaults to None, so that this method never raises a KeyError

See in CSE 160 Syntax examples:

https://courses.cs.washington.edu/courses/cse160/20au/computing/syntax examples.html
17

https://courses.cs.washington.edu/courses/cse160/20au/computing/syntax_examples.html

Problems with the implementation

client program to compute top 5:
wc_dict = read words(filename)
result = topk(wc_dict, 5)

* Thewe_dict dictionary is exposed to the client:
the client might corrupt or misuse it.

* |f we change our implementation (say, to use a list of
tuples), it may break the client program.

We prefer to
— Hide the implementation details from the client
— Collect the data and functions together into one unit

18

Datatypes and Classes

* A class creates a namespace for:
— Variables or “fields” to hold the data

— Functions to create, query, and modify

* Each function defined in the class is called a method
— Takes “self” (a value of the class type) as the first argument

e Aclass defines a datatype
— An object is a value of that type

— Comparison to other types:
ey = 22
— Type of yis int, value of y is 22
* g = nx.Graph()
— Type of g is Graph, value of g is the object that g is bound to

— Type is the class, value is an object also known as an instantiation or
instance of that type

19

TeXt ana|YSiS mOdUIe # client program to compute top 5:

(group of related functions) wc_dict = read_worc_is (filename)
representation = dictionary result = topk(wc_dict, 5)

def read words(filename) :
"""Return dictionary mapping each word in filename to its frequency."""
wordfile = open (filename)
word list = wordfile.read() .split()
wordfile.close ()
wordcounts_dict = {}
for word in word list:
count = wordcounts_dict.setdefault (word, 0)
wordcounts_dict[word] = count + 1

return wordcounts_dict

def get count (wordcounts_dict, word):
"""Return count of the word in the dictionary. """
return wordcounts_dict.get (word, 0)

def topk (wordcounts dict, k=10):
"""Return list of (count, word) tuples of the top k most frequent words."""
counts _with words = [(c, w) for (w, c) in wordcounts_dict.items()]
counts_with words.sort (reverse=True)

return counts with words[0:k]

def total words (wordcounts_dict):
"""Return the total number of words."""

return sum(wordcounts dict.values())

20

e - # cli t t
Text analysis, |Thetreofueis | | ¥ cliene peosman <

WordCounts]

compute top 5:

wc.read words (filename)

as a Class result = wc. topk (5)

class WordCounts: i
"""Represents the words in a file.""" topk takes Defines a class
Internal representation: 2 arguments — (a datatype)
variable wordcounts dict is a dictionary mapping a word its frequency named

_ WordCounts
def read words (self, fm The type of self [
"""pPopulate a WordCounts object from the given file" isWordCounts .
word list = open(filename) .read() .split() Modifies a
self.wordcounts dict = {} — WordCounts
for w in word list: object
self .wordcounts dict.setdefault (w, O0)
self.wordcounts_dict[w] +=1 read—words does _
— not return a value; | _
def get count(self, word): — it mutates self
"""Return the count of the given word"""
return self.wordcounts_dict.get (word, 0)
def topk(self, k=10): Queries a
"""Return a list of the top k most frequent words in order""" WordCounts
scores and words = [(c,w) for (w,c) in self.wordcounts dict.items ()] —]
scores:and:words.sort(reverse=True) _ Cﬂ”eCt

return score_and words[0:k] The namespace of a

def total words(self):
"""Return the total number of words in the file"""

return sum(self.wordcounts dict.wvalues())
- get count

WordCounts object:
wordcounts_dict— m

Each function in a class is called a method. topk

read words ——9@ >¢

Its first argument is of the type of the class.

21
total words _ M

client program to compute top 5:

wc = WordCounts
wc.read words (filename) ——

Weird constructor: it
. does not do any work

— You have to call a

mutator immediately

afterward
result = wc.topk(3) A value of type
WordCounts TWO_
/ \ — equivalent
result = WordCounts. topk (wc, 5) calls

\

J

\

J

!

A namespace,
like a module
(the name of
the class)

!

A function that takes
two arguments

But no one
does it
this way!
Use the first
approach!

<

/

22

Class with constructor

class WordCounts:

client program to compute top 5:
wc = WordCounts (filename)

result = wc.topk(S)/
/

"""Represents the words in a file."""

Internal representation:

The constructor now needs a parameter

variable wordcounts dict is a dictionary

mapping a word its frequency

/;ef __init (self, filename):

words = open(filename) .read () .split()
self.wordcounts _dict = {}
for w in words:

self.wordcounts_dict.setdefault(w, 0)
self.wordcounts dict[w] += 1

_

"""Create a WordCounts object from the given file"""

~

\\

def get count(self, word):
"""Return the count of the given word"""
return self.wordcounts_dict.get (word, 0)

def topk(self, k=10):

__init__isa
special function, a
“constructor”

\

"""Return a list of the top k most frequent words in order"""

scores_and_words =

scores_and words.sort (reverse=True)
return scores_and words[0:k]

def total words (self):

[(c,w) for (w,c) in self.wordcounts dict.items()]

"""Return the total number of words in the file"""
return sum([c for (w,c) in self.wordcounts_dict])

23

Alte rnate # client program to compute top 5:

wc = WordCounts (filename)
dplementation
class WordCo

result = wc.topk(5)
unts k
"""Represents the words in a file."""

. |
Internal representation: Exact same program!

variable words list is a list of the words in the file

def init (self, filename):
"""Create a WordCounts object from the given file"""
self .words list = open(filename) .read() .split()

def get count(self, word):
"""Return the count of the given word"""
return self.words list.count (word)

def topk(self, k=10):
"""Return a list of the top k most frequent words in order"""

scores _with words = [(self.get count(w), w) for w in set(self.words_ list)]
scores _with words.sort(reverse=True)

return scores _with words[0:k]

The namespace of a
WordCounts object:

words_Tis}t
__init ‘9@
get count >¢
return len(self.words list) topk M

total words —

list

def total words(self):

"""Return the total number of words
in the file" mwn

24

