
Data Abstraction

Ruth Anderson

UW CSE 160

Autumn 2021

1

Two types of abstraction

Abstraction: Ignoring/hiding some aspects of a
thing

• In programming, ignore everything except the
specification or interface

• The program designer decides which details to
hide and to expose

1) Procedural abstraction - Already covered

2) Data abstraction - Topic for today!

2

Review: Procedural Abstraction

• Define a function specification that describes how
to use the function

– Aside: a function is sometimes called a “procedure”

• Hide implementation details from the user/client

• Examples:

– You know how to USE the functions sorted and abs

– You do not know how these functions are
IMPLEMENTED

3

Review: Procedural Abstraction

def abs(x):

if x < 0:

return -1 * x

else:

return 1 * x

def abs(x):

if x < 0:

return -x

else:

return x

def abs(x):

if x < 0:

result = -x

else:

result = x

return result

def abs(x):

return math.sqrt(x * x)

4

We only need to know how to USE abs.
We do not need to know how abs is IMPLEMENTED.

Data Abstraction

• Define what the datatype represents

• Define how to create, query, and modify

• Hide implementation details of representation and of
operations from the user/client

• Examples:
– You know how to USE the datatypes int, float, list,
dict , set

– You do not know how these are actually stored in
memory or how operations on them are IMPLEMENTED
• How is .sort() implemented on lists?

• How is .items() implemented for dictionaries?

• How is .remove() implemented for sets?

5

Types and Classes

• Built in types like int, float, list, dict ,

set are examples of Data Abstraction

• Python provides a way for users to essentially
create their own types by defining a class

– You can then create instances of that
class or objects

• You have already used a class in the
networkx module!

6

Review:
Using the Graph class in networkx
import networkx as nx

g = nx.Graph()

module
name

alias

from networkx import Graph, DiGraph

g = Graph()

g.add_node(1)

g.add_node(2)

g.add_node(3)

g.add_edge(1, 2)

g.add_edge(2, 3)

print(g.nodes())

print(g.edges())

print(list(g.neighbors(2)))

Graph and DiGraph are the
names of classes

Good style for Python class names
use CapWords (sometimes called
CamelCase)

This is a client program that uses
the Graph class.
The client does not need to know
how the class is implemented.

7

Aside: With this way of importing you need to use: nx.
before referring to something in networkx.
With the approach below, you do not.

https://www.python.org/dev/peps/pep-0008/#class-names

Constructors, Instances & Objects
from networkx import Graph, DiGraph

g = Graph()

g.add_node(1)

g.add_edge(1, 2)

…

print(g.nodes())

print(g.edges())

rj = Graph()

rj.add_node("Romeo")

…

practice_graph = Graph()

practice_graph.add_node("A")

…

Graph and DiGraph are the
names of classes

Graph() is the constructor for the
Graph class

g is an instance of the Graph class
We also say that g is a Graph
object

rj and practice_graph are
also instances of the Graph class or
Graph objects

8

Methods and State
from networkx import Graph, DiGraph

g = Graph()

g.add_node(1)

g.add_edge(1, 2)

…

print(g.nodes())

print(g.edges())

rj = Graph()

rj.add_node("Romeo")

…

practice_graph = Graph()

practice_graph.add_node("A")

…

add_node(), add_edge(),
nodes() and edges() are
methods of the Graph class

The nodes and edges of Graph
object g are also known as its state.

Each object has different state.

rj and practice_graph each
have their own nodes and edges
with can be different from the
nodes and edges in other objects.

9

Haven’t I Seen This Before?
from networkx import Graph, DiGraph

g = Graph()

g.add_node(1)

g.add_edge(1, 2)

…

print(g.nodes())

print(g.edges())

rj = Graph()

rj.add_node("Romeo")

…

practice_graph = Graph()

practice_graph.add_node("A")

…
10

Similar to how we called set() or
dict() constructors

Modifies Graph object, similar to how we
called .sort() on instances of lists

Queries Graph object, similar to how we
called .items() on instances of dicts

Representing a graph

• A graph consists of:

– nodes/vertices

– edges among the nodes

• If you were implementing the Graph class, how
would you store the nodes and the edges?
– Would you use lists, sets, dicts?

– How would you implement methods like:
• edges()

• neighbors(a)

a

b c

11

Representing a graph

• A graph consists of:

– nodes/vertices

– edges among the nodes

• Possible Representations:
– set of nodes and set of edges

• nodes are {a, b, c}

• edges are {(a, b), (b, c)}

– dict with node for key, a list of neighbors as value
• {a: [b], b: [a, c], c: [b]}

12

a

b c

def read_words(filename):

"""Return dictionary mapping each word in filename to its frequency."""

wordfile = open(filename)

word_list = wordfile.read().split()

wordfile.close()

wordcounts_dict = {}

for word in word_list:

count = wordcounts_dict.setdefault(word, 0)

wordcounts_dict[word] = count + 1

return wordcounts_dict

def get_count(wordcounts_dict, word):

"""Return count of the word in the dictionary. """

return wordcounts_dict.get(word, 0)

def topk(wordcounts_dict, k=10):

"""Return list of (count, word) tuples of the top k most frequent words."""

counts_with_words = [(c, w) for (w, c) in wordcounts_dict.items()]

counts_with_words.sort(reverse=True)

return counts_with_words[0:k]

def total_words(wordcounts_dict):

"""Return the total number of words."""

return sum(wordcounts_dict.values())

Text analysis module
(group of related functions)
representation = dictionary

client program to compute top 5:

wc_dict = read_words(filename)

result = topk(wc_dict, 5)

13

Aside: setdefault

def read_words(filename):

"""Given a filename, return a dictionary mapping each word

in filename to its frequency in the file"""

wordfile = open(filename)

worddata = wordfile.read()

word_list = worddata.split()

wordfile.close()

wordcounts_dict = {}

for word in word_list:

if word in wordcounts_dict:

wordcounts_dict[word] = wordcounts_dict[word] + 1

else:

wordcounts_dict[word] = 1

return wordcounts_dict

14

This “default” pattern is
so common, there is a
special method for it.

setdefault

def read_words(filename):

"""Given a filename, return a dictionary mapping each

word in filename to its frequency in the file"""

wordfile = open(filename)

worddata = wordfile.read()

word_list = worddata.split()

wordfile.close()

wordcounts_dict = {}

for word in word_list:

count = wordcounts_dict.setdefault(word, 0)

wordcounts_dict[word] = count + 1

return wordcounts_dict

15

This “default” pattern is
so common, there is a
special method for it.

setdefault

for word in word_list:

if word in wordcounts_dict:

wordcounts_dict[word] = wordcounts_dict[word] + 1

else:

wordcounts_dict[word] = 1

VS:

for word in word_list:

count = wordcounts_dict.setdefault(word, 0)

wordcounts_dict[word] = count + 1

setdefault(key[, default])
• If key is in the dictionary, return its value.
• If key is NOT present, insert key with a value of default, and return default.
• If default is not specified, the value None is used.

16

get

def get_count(wordcounts_dict, word):

"""Return count of the word in the dictionary. """

if word in wordcounts_dict:

return wordcounts_dict[word]

else:

return 0

VS:

def get_count(wordcounts_dict, word):

"""Return count of the word in the dictionary. """

return wordcounts_dict.get(word, 0)

get(key[, default])

• Return the value for key if key is in the dictionary, else default.
• If default is not given, it defaults to None, so that this method never raises a KeyError

See in CSE 160 Syntax examples:
https://courses.cs.washington.edu/courses/cse160/20au/computing/syntax_examples.html

17

https://courses.cs.washington.edu/courses/cse160/20au/computing/syntax_examples.html

Problems with the implementation

• The wc_dict dictionary is exposed to the client:
the client might corrupt or misuse it.

• If we change our implementation (say, to use a list of
tuples), it may break the client program.

We prefer to
– Hide the implementation details from the client
– Collect the data and functions together into one unit

client program to compute top 5:

wc_dict = read_words(filename)

result = topk(wc_dict, 5)

18

Datatypes and Classes

• A class creates a namespace for:
– Variables or “fields” to hold the data
– Functions to create, query, and modify

• Each function defined in the class is called a method
– Takes “self” (a value of the class type) as the first argument

• A class defines a datatype
– An object is a value of that type
– Comparison to other types:

• y = 22

– Type of y is int, value of y is 22

• g = nx.Graph()

– Type of g is Graph, value of g is the object that g is bound to
– Type is the class, value is an object also known as an instantiation or

instance of that type

19

def read_words(filename):

"""Return dictionary mapping each word in filename to its frequency."""

wordfile = open(filename)

word_list = wordfile.read().split()

wordfile.close()

wordcounts_dict = {}

for word in word_list:

count = wordcounts_dict.setdefault(word, 0)

wordcounts_dict[word] = count + 1

return wordcounts_dict

def get_count(wordcounts_dict, word):

"""Return count of the word in the dictionary. """

return wordcounts_dict.get(word, 0)

def topk(wordcounts_dict, k=10):

"""Return list of (count, word) tuples of the top k most frequent words."""

counts_with_words = [(c, w) for (w, c) in wordcounts_dict.items()]

counts_with_words.sort(reverse=True)

return counts_with_words[0:k]

def total_words(wordcounts_dict):

"""Return the total number of words."""

return sum(wordcounts_dict.values())

Text analysis module
(group of related functions)
representation = dictionary

client program to compute top 5:

wc_dict = read_words(filename)

result = topk(wc_dict, 5)

20

class WordCounts:

"""Represents the words in a file."""

Internal representation:

variable wordcounts_dict is a dictionary mapping a word its frequency

def read_words(self, filename):

"""Populate a WordCounts object from the given file"""

word_list = open(filename).read().split()

self.wordcounts_dict = {}

for w in word_list:

self.wordcounts_dict.setdefault(w, 0)

self.wordcounts_dict[w] += 1

def get_count(self, word):

"""Return the count of the given word"""

return self.wordcounts_dict.get(word, 0)

def topk(self, k=10):

"""Return a list of the top k most frequent words in order"""

scores_and_words = [(c,w) for (w,c) in self.wordcounts_dict.items()]

scores_and_words.sort(reverse=True)

return score_and_words[0:k]

def total_words(self):

"""Return the total number of words in the file"""

return sum(self.wordcounts_dict.values())

Each function in a class is called a method.
Its first argument is of the type of the class.

Text analysis,
as a class

Defines a class
(a datatype)
named
WordCounts

Modifies a
WordCounts
object

Queries a
WordCounts
object

read_words does
not return a value;
it mutates self

The type of self
is WordCounts

wordcounts_dict

read_words

get_count

topk

total_words

The namespace of a
WordCounts object:

dict

fn
fn

fn fn

client program to compute top 5:

wc = WordCounts()

wc.read_words(filename)

result = wc.topk(5)

topk takes
2 arguments

The type of wc is
WordCounts

21

client program to compute top 5:

wc = WordCounts()

wc.read_words(filename)

result = wc.topk(5)

result = WordCounts.topk(wc, 5)

A namespace,
like a module
(the name of
the class)

A function that takes
two arguments

A value of type
WordCounts Two

equivalent
calls

Weird constructor: it
does not do any work

You have to call a
mutator immediately

afterward

22

But no one
does it

this way!
Use the first
approach!

Class with constructor
class WordCounts:

"""Represents the words in a file."""

Internal representation:

variable wordcounts_dict is a dictionary mapping a word its frequency

def __init__(self, filename):

"""Create a WordCounts object from the given file"""

words = open(filename).read().split()

self.wordcounts_dict = {}

for w in words:

self.wordcounts_dict.setdefault(w, 0)

self.wordcounts_dict[w] += 1

def get_count(self, word):

"""Return the count of the given word"""

return self.wordcounts_dict.get(word, 0)

def topk(self, k=10):

"""Return a list of the top k most frequent words in order"""

scores_and_words = [(c,w) for (w,c) in self.wordcounts_dict.items()]

scores_and_words.sort(reverse=True)

return scores_and_words[0:k]

def total_words(self):

"""Return the total number of words in the file"""

return sum([c for (w,c) in self.wordcounts_dict])

client program to compute top 5:

wc = WordCounts(filename)

result = wc.topk(5)

23

__init__ is a
special function, a

“constructor”

The constructor now needs a parameter

Alternate
implementation

class WordCounts:

"""Represents the words in a file."""

Internal representation:

variable words_list is a list of the words in the file

def __init__(self, filename):

"""Create a WordCounts object from the given file"""

self.words_list = open(filename).read().split()

def get_count(self, word):

"""Return the count of the given word"""

return self.words_list.count(word)

def topk(self, k=10):

"""Return a list of the top k most frequent words in order"""

scores_with_words = [(self.get_count(w), w) for w in set(self.words_list)]

scores_with_words.sort(reverse=True)

return scores_with_words[0:k]

def total_words(self):

"""Return the total number of words

in the file"""

return len(self.words_list)

client program to compute top 5:

wc = WordCounts(filename)

result = wc.topk(5)

Exact same program!

words_list

__init__

get_count

topk

total_words

The namespace of a
WordCounts object:

fn
fn

fn fn

list

24

