
CSE 160 Section 4 Problems

1. After the following lines of code are printed, what values are printed?

list_1 = [1, 2, 3, 4, 5]

list_2 = list_1

list_3 = list_1[0:5] ​# Note:​ ​list_1[:] ​ is equivalent, more general and
better

list_2[0] = 98

list_1[4] = 99

print("List 1:", list_1)

print("List 2:", list_2)

print("List 3:", list_3)

2. Given the following code:

list_1 = ['A', 'B', 'C', 'D']

list_2 = ['J', 'L']

list_3 = ['U', 'V', 'W', 'X']

list_4 = ['M', 'N', 'O']

list_5 = ['P', 'Q', 'R', 'S', 'T', 'Y', 'Z']

list_6 = ['I', 'H', 'G', 'F', 'E']

list_7 = ['K']

Use only list accesses ​[] ​, ​extend() ​, ​insert() ​, and ​reverse() ​ – and possibly, a for loop
-- to modify ​list_1​ so that it contains all the letters of the alphabet in alphabetical order:

print("List 1:", list_1)

The command above should print a list that contains all the letters of the alphabet in
alphabetical order.

3. Using the same initial lists as in Question 2, redo the problem, but this time you are allowed
to use the ​sort()​ function.

Challenge Problem
4. For each of the following questions, implement a function that returns the answer to the
question. For each question, follow this procedure:

1. Identify a good name for the function.
2. Identify the return value.
3. Identify any necessary parameters.
4. Write the function definition.
5. Write the function's docstring.
6. Describe, on paper, in words, or in your head, the algorithm you'll use to solve the problem.
7. Implement the function.

Note: Practice effective programming by making sure you understand your approach in step 6
before implementing the code in step 7. It is also a good idea to think of test cases that validate
your function input/outputs.

You and your friends have set up "best friends" lists. Each of your lists contains the name of the
list owner followed by the names of his/her top friends. Your name in your friends' lists is "me".

my_friends = ["me", "Emily", "John", "Ed", "Louise", "Tom"]

emily_friends = ["Emily", "me", "Rob", "Sue", "Alice", "Eric"]

john_friends = ["John", "Ed", "Rob", "Sue", "Eric", "Meg", "Emily"]

ed_friends = ["Ed", "me", "Tom", "John", "Emily","Sue", "Liam"]

louise_friends = ["Louise", "me", "Alice", "Sue", "Emily", "Meg"]

tom_friends = ["Tom", "John", "Alice", "Ed", "Louise", "Emily", "me"]

Friends (a list of lists) is constructed as follows. Your list is at position ​friends[0]​.

friends = [my_friends, emily_friends, john_friends, ed_friends,

louise_friends, tom_friends]

1. Write a function to return the index of the first occurrence of name in a friend list, given the
name and a friend list. If the name is not in the list, the function will return ​-1​.

2. Write a function that given a name and ​friends ​(the list of friend lists), will return the index
of that person's​ list​ in the friends list. If that name is not found, your function will return​ -1​.

3. Write a function that, when given ​friends ​will calculate how many of your best friends
views you as one of their best friends (if you are their “mutual friend”) and return the value.

4. Modify your function above to calculate the "mutual friend" value for any individual friend list.
Hint: Using a function you made in 1-3 may simplify your solution.
5. Write a function to determine, given ​friends​, do any of the lists consist entirely of people
who "agreed" on their mutual "best friend status. That is, if you view them as a best friend, they
also view you as a best friend.

CSE 160 Section 4 Solutions

1. List 1: [98, 2, 3, 4, 99]

List 2: [98, 2, 3, 4, 99]
List 3: [1, 2, 3, 4, 5]

2. ONE POSSIBLE SOLUTION:

list_6.reverse()
list_1.extend(list_6)
list_2.insert(1, list_7[0])
list_1.extend(list_2)
list_1.extend(list_4)
list_1.extend(list_5)

for item in list_3:

list_1.insert(-2, item)

3. ONE POSSIBLE SOLUTION:

list_1.extend(list_2)
list_1.extend(list_3)
list_1.extend(list_4)
list_1.extend(list_5)
list_1.extend(list_6)
list_1.extend(list_7)
list_1.sort()
print(list_1)

4.
1.
def find_index(my_list, my_value):

for index in range(len(my_list)):
 if my_list[index] == my_value:

 return index
return -1

2.
def friend_list_index(friends_list, name):

 for index in range(len(friends_list)):
 if friends_list[index][0] == name:

 return index
 return -1
3.
def really_my_friends(friends_list):

num_friends = 0
 my_list = friends_list[0]
 others = friends_list[1:]
 for friends in others:

 if "me" in friends:

 num_friends = num_friends + 1
 return num_friends

4.
def really_friends(friends_list, name):

 num_friends = 0
 index = friend_list_index(friends_list, name)
 name_list = friends_list[index]
 others = friends_list[0:len(friends_list)]
 others.remove(name_list)
 for friends in others:

 if name in friends:
 num_friends = num_friends + 1

 return num_friends
5.
def all_mutual_friends(friends_list):

 for person_list in friends_list:
 if really_friends(friends_list, person_list[0]) == (len(person_list) - 1):
 return True

 return False

Name (first and last):

Email:

--

a) How do you like poll everywhere so far?

b) How do you feel about the overall pace of this class?

Name (first and last):

Email:

--

a) How do you like poll everywhere so far?

b) How do you feel about the overall pace of this class?

