
Algorithmic complexity:
Speed of algorithms

Ruth Anderson

UW CSE 160

Bonus Material - Winter 2020

1

How fast does your program run?

• Usually, this does not matter

• Correctness is more important than speed

• Computer time is much cheaper than human time

• The cost of your program depends on:
– Time to write and verify it

• High cost: salaries

– Time to run it
• Low cost: electricity

• An inefficient program may give you results faster

2

Sometimes, speed does matter

• Programs that need to run in real time
– e.g. will my car crash into the car in front of me?

• Very large datasets
– Even inefficient algorithms usually run quickly enough

on a small dataset

– Example large data set:
Google:

67 billion pages indexed (2014)

5.7 billion searches per day (2014)

Number of pages searched per day??

3

Program Performance

We’ll discuss two things a programmer can do to
improve program performance:

• Good Coding Practices – covered 2/28/2020

• Good Algorithm Choice

4

Good Algorithm Choice

• Good choice of algorithm can have a much
bigger impact on performance than the good
coding practices mentioned.

• However good coding practices can be applied
fairly easily

• Trying to come up with a better algorithm can
be a (fun!) challenge

• Remember:
Correctness is more important than speed!!

5

How to compare two algorithms?

• Implement them both in Python

• Run them and time them

6

A Better Way to Compare Two Algorithms

• Hardware?
– Count number of “operations” something

independent of speed of processor

• Properties of data set? (e.g. almost sorted, all one value,
reverse sorted order)

– Pick the worst possible data set: gives you an upper
bound on how long the algorithm will take

– Also it can be hard to decide on what is and “average”
data set

• Size of data set?
– Describe running time of algorithm as a function of

data set size

7

Asymptotic Analysis

• Comparing “Orders of Growth”

• This approach works when problem size is large

– When problem size is small, “constant factors” matter

• A few common Orders of Growth:

Example:

– Constant O(1) integer + integer

– Linear O(n) iterating through a list

– Quadratic O(n2) iterating through a grid

8

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.

9

O(n3) O(n2)

n n

Running Times of Python Operations
Constant Time operations: O(1)

– Basic Math on numbers (+ - * /)
– Indexing into a sequence (eg. list, string, tuple) or dictionary

• E.g. myList[3] = 25

– List operations: append, pop(at end of list)
– Sequence operation: len
– Dictionary operation: in
– Set operations: in, add, remove, len

Linear Time operations: O(n)
– for loop traversing an entire sequence or dictionary
– Built in functions: sum, min, max, slicing a sequence
– Sequence operations: in, index, count
– Dictionary operations: keys(), values(), items()
– Set operations: &, |, -

– String concatenation (linear in length of strings)

10

Note: These are general guidelines, may vary, or may have a more costly worst case. Built in
functions (e.g. sum, max, min, sort) are often faster than implementing them yourself.

Example: Processing pairs

def make_pairs(list1, list2):

"""Return a list of pairs.

Each pair is made of corresponding elements of list1 and list2.

list1 and list2 must be of the same length."""

…

assert make_pairs([100, 200, 300], [101, 201, 301]) == [[100, 101],

[200, 201], [300, 301]]

• 2 nested loops vs. 1 loop

• Quadratic (n2) vs. linear (n) time

11

Example: Searching

def search(value, lst):

"""Return index of value in list lst.

The value must be in the list."""

…

• Any list vs. a sorted list

• Linear (n) vs. logarithmic (log n) time

12

Example: Sorting

def sort(lst):

"""Return a sorted version of the list lst.

The input list is not modified."""

…

assert sort([3, 1, 4, 1, 5, 9, 2, 6, 5]) == [1, 1,

2, 3, 4, 5, 5, 6, 9]

• selection sort vs. quicksort

• 2 nested loops vs. recursive decomposition

• time: quadratic (n2) vs. log-linear (n log n) time

13
Note: Calling built in sorting methods sort or sorted in Python has O(n log n) time

