Algorithmic complexity:
Speed of algorithms
Ruth Anderson

UW CSE 160
Bonus Material - Winter 2020

How fast does your program run?

Usually, this does not matter
Correctness is more important than speed

Computer time is much cheaper than human time

The cost of your program depends on:

— Time to write and verify it
* High cost: salaries

— Time to run it
* Low cost: electricity

An inefficient program may give you results faster

Sometimes, speed does matter

* Programs that need to run in real time
— e.g. will my car crash into the car in front of me?

* Very large datasets

— Even inefficient algorithms usually run quickly enough
on a small dataset

— Example large data set:
Google:
67 billion pages indexed (2014)
5.7 billion searches per day (2014)
Number of pages searched per day??

Program Performance

We'll discuss two things a programmer can do to
improve program performance:

* Good Coding Practices — covered 2/28/2020
* Good Algorithm Choice

Good Algorithm Choice

Good choice of algorithm can have a much
bigger impact on performance than the good
coding practices mentioned.

However good coding practices can be applied
fairly easily

Trying to come up with a better algorithm can
be a (fun!) challenge

Remember:
Correctness is more important than speed!!

How to compare two algorithms?

* Implement them both in Python
* Run them and time them

A Better Way to Compare Two Algorithms

e Hardware?

— Count number of “operations” something
independent of speed of processor

* Properties of data set? (e.g. almost sorted, all one value,
reverse sorted order)

— Pick the worst possible data set: gives you an upper
bound on how long the algorithm will take

— Also it can be hard to decide on what is and “average”
data set

e Size of data set?

— Describe running time of algorithm as a function of
data set size

Asymptotic Analysis

 Comparing “Orders of Growth”
* This approach works when problem size is large

— When problem size is small, “constant factors” matter

e A few common Orders of Growth:

Example:
— Constant O(1) integer + integer
— Linear O(n) iterating through a list

— Quadratic O(n?) iterating through a grid

Which Function Grows Faster?

O (n3) O (n?2)
n3 + 2n? vs. 100n? + 1000

12000 Je+06

N3+ 272 — "n"3 o+ 2 —
10072 + 1000 —— A g oe L 100n™2 + 1000 ——
10000
TJe+lB
8000 | 1 ge+os |
Se+0fA
6000 |
de+B
4000 F 1 3e+06 |
2e+06
2000 |
le+06B |
0 0

200 40 B0 80 100 120 140 160 180 Z00

n n

Running Times of Python Operations

Constant Time operations: O(1)

Basic Math on numbers (+ - * /)

Indexing into a sequence (eg. list, string, tuple) or dictionary
* E.g.myList[3] = 25

List operations: append, pop(at end of list)

Sequence operation: 1len

Dictionary operation: in

Set operations: in, add, remove, len

Linear Time operations: O(n)

for loop traversing an entire sequence or dictionary

Built in functions: sum, min, max, slicing a sequence
Sequence operations: in, index, count

Dictionary operations: keys () , values (), items()
Set operations: &, |, -

String concatenation (linear in length of strings)

Note: These are general guidelines, may vary, or may have a more costly worst case. Built in
functions (e.g. sum, max, min, sort) are often faster than implementing them yourself. 1o

Example: Processing pairs

def make pairs(listl, list2):
"""Return a list of pairs.
Each pair is made of corresponding elements of listl and list2.
listl and l1list2 must be of the same length."""

assert make pairs([100, 200, 300], [101, 201, 301]) == [[100, 101],
[200, 201], [300, 301]]

* 2 nested loops vs. 1 loop
* Quadratic (n?) vs. linear (n) time

11

Example: Searching

def search(value, 1l1lst):
"""Return index of wvalue in list 1lst.
The value must be in the list."""

* Any list vs. a sorted list
* Linear (n) vs. logarithmic (log n) time

12

Example: Sorting

def sort(lst):
"""Return a sorted version of the list 1lst.
The input list is not modified."""

assert sort([3, 1, 4, 1, 5, 9, 2, 6, 5]) == [1, 1,
2, 3, 4, 5, 5, 6, 9]

* selection sort vs. quicksort
* 2 nested loops vs. recursive decomposition
* time: quadratic (n?) vs. log-linear (n log n) time

Note: Calling built in sorting methods sort or sorted in Python has O(n log n) time .

