Introduction to Python and programming

Ruth Anderson

UW CSE 160
Winter 2020

1. Python is a calculator

2. Different types cannot be compared

3. A variable is a container

4. A program is a recipe

CORNBREAD

Colvin Run Mill Corn Bread
1 cup cornmeal
1 cup flour
$1 / 2$ teaspoon salt
4 teaspoons baking powder
3 tablespoons sugar
1 egg
1 cup milk
$1 / 4$ cup shortening (soft) or vegetable oil
Mix together the dry ingredients. Beat together the egg,
milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8×8 or 9×9 baking pan. Bake at 425 degrees for 20-25 minutes.

O. Don't panic!

- CSE 160 is for beginners to programming
- (If you know how to program, you don't belong)
- You can learn to program in 10 weeks
- You will work hard
- We will work hard to help you
- Ask questions!
- This is the best way to learn

1. Python is a calculator

You type expressions. Python computes their values.

- 5
- $3+4$
- 44 / 2
- $2^{* *} 3$
- 3 * $4+5^{*} 6$
- If precedence is unclear, use parentheses
- $(72-32) / 9 * 5$

An expression is evaluated from the inside out

- How many expressions are in this Python code?

$(72-32) / 9.0 * 5$
(40) / 9.0 * 5

40 / 9.0 * 5
4.44 * 5
22.2

Another evaluation example

(72-32) / (9.0 * 5)
(40) / (9.0 * 5)
$40 /(9.0$ * 5$)$
40 / (45.0)
40 / 45.0
. 888

2. A variable is a container

Variables hold values

- Recall variables from algebra:
- Let $\mathrm{x}=2$...
- Let $\mathrm{y}=\mathrm{x}$...
- In Python assign a variable: "varname = expression"

avogadro $=6$ * 10 ** 23
avogadro
$22=x \quad$ \# Error!
- Not all variable names are permitted

Changing existing variables ("re-binding" or "re-assigning")
 $x=2$
 \mathbf{x}
 $y=2$
 Y
 $x=5$
 x
 y
 - "=" in an assignment is not a promise of eternal equality

- This is different than the mathematical meaning of "="
- Evaluating an expression gives a new (copy of a) number, rather than changing an existing one

How an assignment is executed

1. Evaluate the right-hand side to a value
2. Store that value in the variable
$\mathrm{x}=2$
print(x)
$\mathrm{y}=\mathrm{x}$
print(y)
$z=x+1$
print(z)
$x=5$
print(x)
print(y)
print(z)

State of the computer:

Printed output:

To visualize a program's execution:
http://pythontutor.com Link to this code here

How an assignment is executed

1. Evaluate the right-hand side to a value
2. Store that value in the variable
$x=2$
print (x)
$y=x$
print (y)
$z=x+1$
print(z)
$x=5$
print (x)
print (y)
print(z)

State of the computer:

Printed output:

To visualize a program's execution: http://pythontutor.com Link to this code here

More expressions: Conditionals (value is True or False)

$22>4$
$22<4$
$22==4$
$\mathrm{x}=100$
$22=4$
\# Assignment, not conditional! \# Error!
x >= 5
$x>=100$
$x>=200$
not True
not (x >= 200)
$3<4$ and $5<6$
$4<3$ or $5<6$
Numeric operators: + , *, ** Mixed operators: <, >=, == Boolean operators: not, and, or
water_is_liquid $=$ temp >32 and temp $<212^{3}$

More expressions: strings

A string represents text
'Python'

```
    this_class = "CSE 160"
```

 \| V
 Empty string is not the same as an unbound variable
Operations on strings:

- Length:
len(this_class)
- Concatenation:
"Ruth" + 'Anderson'
- Containment/searching:
'O' in this_class
"O" in this_class

3. Different types cannot be compared

Types of values

- Integers (int): -22, 0, 44
- Arithmetic is exact
- Some funny representations: 12345678901L
- Real numbers (float, for "floating point"): 2.718, 3.1415
- Arithmetic is approximate, e.g., 6.022*10**23
- Some funny representations: 6.022e+23
- Strings (str): "I love Python",
- Truth values (bool, for "Boolean"): True, False

Operations behave differently on different types

$3.0+4.0$
$3+4$
$3+4.0$
"3" + "4"
$3+44 "$
$3+$ True
\# Error
\# Insanity! (Don't do this.)

Moral: Python sometimes tells you when you do something that does not make sense.

Operations behave differently on different types

$15.0 / 4.0$
15 / 4 \# Would have been truncated in Python 2.
$15.0 / 4$
15 / 4.0

Type conversion:
float(15)
int(15.0)
int(15.5)
int("15")
str(15.5)

4. A program is a recipe

What is a program?

See in python tutor

- A program is a sequence of instructions
- The computer executes one after the other, as if they had been typed to the interpreter
- Saving your work as a program is better than retyping from scratch
$\mathbf{x}=1$
$y=2$
$x+y$
print $(x+y)$
print("The sum of", x, "and", y, \quad "is", $x+y)$

Interlude: The print statement

- The print statement always prints one line
- The next print statement prints below that one
- For Python 3 , print is followed by parentheses
- Write 0 or more expressions after print, separated by commas
- In the output, the values are separated by spaces
- Examples:
print(3.1415)
print(2.718, 1.618)
print()
print (20 + 2, 7 * 3, 4 * 5)
print("The sum of", x, "and", y, "is", x+y)

Exercise: Convert temperatures

- Make a temperature conversion chart: Fahrenheit to Centrigrade, for -40, 0, 32, 68, 98.6, 212, 293, 451 Output:

$$
\begin{array}{ll}
-40 & -40.0 \\
0 & -17.7778 \\
32 & 0.0 \\
68 & 20.0 \\
98.6 & 37.0 \\
212 & 100.0 \\
293 & 145.0 \\
451 & 232.778
\end{array}
$$

- You have created a Python program!
- (It doesn't have to be this tedious, and it won't be.)

Expressions, statements, and programs

- An expression evaluates to a value
$3+4$
pi * r**2
- A statement causes an effect
pi $=3.14159$
print(pi)
- Expressions appear within other expressions and within statements
(fahr - 32) * (5.0 / 9)
print(pi * r**2)
- A statement may not appear within an expression

3 + print (pi) \#Error!

- A program is made up of statements
- A program should do something or communicate information
- Just evaluating an expression does not accomplish either goal

1. Python is a calculator

2. Different types cannot be compared

3. A variable is a container

4. A program is a recipe

CORNBREAD

Colvin Run Mill Corn Bread
1 cup cornmeal
1 cup flour
$1 / 2$ teaspoon salt
4 teaspoons baking powder
3 tablespoons sugar
1 egg
1 cup milk
$1 / 4$ cup shortening (soft) or vegetable oil
Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients Mix quickly by hand. Pour into greased 8×8 or 9×9 baking pan. Bake at 425 degrees for 20-25 minutes.

