Introduction to Python and programming

Ruth Anderson
UW CSE 160
Winter 2020
1. Python is a calculator

2. A variable is a container

3. Different types cannot be compared

4. A program is a recipe
0. Don’t panic!

- CSE 160 is for beginners to programming
 - (If you know how to program, you don’t belong)
- You can learn to program in 10 weeks
 - You will work hard
 - We will work hard to help you
- Ask questions!
 - This is the best way to learn
1. Python is a calculator
You type *expressions*. Python computes their *values*.

- 5
- 3 + 4
- 44 / 2
- 2 ** 3
- 3 * 4 + 5 * 6
 - If precedence is unclear, use parentheses
- (72 – 32) / 9 * 5
An expression is evaluated from the inside out

• How many expressions are in this Python code?

\[(72 - 32) / 9.0 \times 5\]

\[(40) / 9.0 \times 5\]

\[4.44 \times 5\]

\[22.2\]
Another evaluation example

\[
\frac{(72 - 32)}{(9.0 \times 5)}
\]
\[
\frac{40}{(9.0 \times 5)}
\]
\[
\frac{40}{(9.0 \times 5)}
\]
\[
\frac{40}{(45.0)}
\]
\[
\frac{40}{45.0}
\]
\[
.888
\]
2. A variable is a container
Variables hold values

• Recall variables from algebra:
 – Let $x = 2$...
 – Let $y = x$...

• In Python assign a variable: “varname = expression”

```python
pi = 3.14
p = pi
avogadro = 6 * 10 ** 23
avogadro
22 = x  # Error!
```

• Not all variable names are permitted
Changing existing variables ("re-binding" or "re-assigning")

\[x = 2 \]
\[x \]
\[y = 2 \]
\[y \]
\[x = 5 \]
\[x \]
\[y \]

- "=" in an assignment is not a promise of eternal equality
 - This is different than the mathematical meaning of "="
- Evaluating an expression gives a new (copy of a) number, rather than changing an existing one
How an assignment is executed

1. Evaluate the right-hand side to a value
2. Store that value in the variable

```python
x = 2
print(x)
y = x
print(y)
z = x + 1
print(z)
x = 5
print(x)
print(y)
print(z)
```

State of the computer:

Printed output:

To visualize a program’s execution:
http://pythontutor.com Link to this code [here](http://pythontutor.com)
How an assignment is executed

1. Evaluate the right-hand side to a value
2. Store that value in the variable

\[
x = 2 \\
\text{print}(x) \\
y = x \\
\text{print}(y) \\
z = x + 1 \\
\text{print}(z) \\
x = 5 \\
\text{print}(x) \\
\text{print}(y) \\
\text{print}(z)
\]

State of the computer:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x: 2</td>
<td></td>
</tr>
<tr>
<td>y: 2</td>
<td></td>
</tr>
<tr>
<td>z: 3</td>
<td></td>
</tr>
</tbody>
</table>

Printed output:

\[
\begin{array}{c}
2 \\
2 \\
3 \\
5 \\
2 \\
3
\end{array}
\]

To visualize a program’s execution:

http://pythontutor.com

Link to this code here
More expressions: Conditionals
(value is True or False)

22 > 4
22 < 4
22 == 4

x = 100
Assignment, not conditional!
22 = 4
Error!
x >= 5
x >= 100
x >= 200
not True
not (x >= 200)
3 < 4 and 5 < 6
4 < 3 or 5 < 6

Numeric operators: +, *, **
Mixed operators: <, >=, ==
Boolean operators: not, and, or

temp = 72
water_is_liquid = temp > 32 and temp < 212
More expressions: strings

A string represents text

'Python'
this_class = "CSE 160"
"

Empty string is not the same as an unbound variable

Operations on strings:

• Length:
 len(this_class)
• Concatenation:
 "Ruth" + 'Anderson'
• Containment/searching:
 '0' in this_class
 "0" in this_class
3. Different types cannot be compared
Types of values

• Integers (int): \(-22, 0, 44\)
 – Arithmetic is exact
 – Some funny representations: \(12345678901\)

• Real numbers (float, for “floating point”):
 \(2.718, 3.1415\)
 – Arithmetic is approximate, e.g., \(6.022 \times 10^{23}\)
 – Some funny representations: \(6.022 \times 10^{23}\)

• Strings (str): "I love Python", ""

• Truth values (bool, for “Boolean”):
 True, False
Operations behave differently on different types

```
3.0 + 4.0  
3 + 4    
3 + 4.0  
"3" + "4"
3 + "4"  # Error  
3 + True  # Insanity! (Don’t do this.)
```

Moral: Python *sometimes* tells you when you do something that does not make sense.
Operations behave differently on different types

15.0 / 4.0
15 / 4 # Would have been truncated in Python 2.
15.0 / 4
15 / 4.0

Type conversion:
 float(15)
 int(15.0)
 int(15.5)
 int("15")
 str(15.5)
4. A program is a recipe

Colvin Run Mill Corn Bread

1 cup cornmeal
1 cup flour
½ teaspoon salt
4 teaspoons baking powder
3 tablespoons sugar
1 egg
1 cup milk
¼ cup shortening (soft) or vegetable oil

Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8x8 or 9x9 baking pan. Bake at 425 degrees for 20-25 minutes.
What is a program?

• A program is a sequence of instructions
• The computer executes one after the other, as if they had been typed to the interpreter
• Saving your work as a program is better than re-typing from scratch

```python
x = 1
y = 2
x + y
print(x + y)
print("The sum of", x, "and", y, "is", x+y)
```
Interlude: The print statement

• The `print` statement always prints one line
 – The next print statement prints below that one
 – For Python 3, `print` is followed by parentheses
 – Write 0 or more expressions after `print`, separated by commas
 – In the output, the values are separated by spaces

• Examples:

  ```
  print(3.1415)
  print(2.718, 1.618)
  print()
  print(20 + 2, 7 * 3, 4 * 5)
  print("The sum of", x, "and", y, "is", x+y)
  ```
Exercise: Convert temperatures

• Make a temperature conversion chart: Fahrenheit to Centigrade, for -40, 0, 32, 68, 98.6, 212, 293, 451

Output:

-40 -40.0
 0 -17.7778
 32 0.0
 68 20.0
 98.6 37.0
 212 100.0
 293 145.0
 451 232.778

• You have created a Python program!
• (It doesn’t have to be this tedious, and it won’t be.)
Expressions, statements, and programs

• An **expression** evaluates to a value
 \[3 + 4 \]
 \[\pi \times r^{**2} \]
• A **statement** causes an effect
 \[\pi = 3.14159 \]
 \[\text{print}(\pi) \]
• Expressions appear within other expressions and within statements
 \[(\text{fahr} - 32) \times (5.0 / 9) \]
 \[\text{print}(\pi \times r^{**2}) \]
• A statement may *not* appear within an expression
 \[3 + \text{print}(\pi) \] \# Error!
• A **program** is made up of statements
 – A program should do something or communicate information
 – Just evaluating an expression does not accomplish either goal
1. Python is a calculator

2. A variable is a container

3. Different types cannot be compared

4. A program is a recipe

Colvin Run Mill Corn Bread
1 cup cornmeal
1 cup flour
1/2 teaspoon salt
4 teaspoons baking powder
3 tablespoons sugar
1 egg
1 cup milk
1/4 cup shortening (soft) or vegetable oil

Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8x8 or 9x9 baking pan. Bake at 425 degrees for 20-25 minutes.