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Name: _____________________________________ 

Email address (UW NetID): _____________________________________ 

 

CSE 160 Winter 2020: Midterm Exam 
 

(closed book, closed notes, no calculators) 

Instructions: This exam is closed book, closed notes. You have 50 minutes to complete it. It contains 10 

questions and 9 pages (including this one), totaling 100 points. Before you start, please check your copy to 

make sure it is complete. Turn in all 9 pages of the exam, together, when you are finished. When time has 

been called you must put down your pencil and stop writing.  A syntax sheet will be provided separately.  

Points will be deducted from your score if you are writing after time has been called. You should only 

use parts of Python that have been covered in the class so far. 

Good Luck!  Total:  100 points. Time: 50 minutes. 

Problem Points Possible 

1 6 

2 4 

3 4 

4 8 

5 12 

6 8 

7 8 

8 14 

9 12 

10 24 

Total 100 
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1) [ 6 pts] For each of the if statements below, write the output when x = 10, x = 30, and x = 200 

in the table below. If there is no output then write “NO OUTPUT”. 

a)  

if x > 20: 

    if x < 50:     

        print("line 1")     

    else: 

        if x < 500:     

            print("line 2")  

    print("line 3") 

b)  

if x > 100: 

    print("line 4") 

elif x <= 40:      

    print("line 5") 

if x > 10: 

    print("line 6") 

 

 
x = 10 x = 30 x = 200 

Code a) 

 

 

  

Code b) 

 

 

  

 

2) [4 pts] Write the output of the code below in the box here: 

sum = 0 

for x in range(5, 2, -1): 

    for y in range(x): 

        sum = sum + y 

print("sum:", sum) 

  

MY ANSWER: 
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3) [4 pts] What output is produced after running the following piece of code?  

A = [5, 7] 

B = list(A) 

C = A 
 

D = A.append(8) 

B.insert(1, 9) 

C[1] = 4 
 

print(A) 

print(B) 

print(C) 

print(D) 
 

MY ANSWER: 

 

 

 

 

4) [8 pts] Suppose we have the following list:  

happy = [2, [1, [4, 3, 0], 5, 2], [8], 6, [9, 7]] 

 

Write the result of the following expressions. If an error is thrown, briefly describe the error. 

a) happy[1]  

b) happy[2]  

c) [9] in happy  

d) 5 in happy[1]  

e) happy[1][1][0]  

f) happy[2][0]  

g) happy[2:4]  

h) len(happy)  

  



4 
 

5) [12 pts] For each of the following statements, show what is printed. If nothing is printed then 

write “NO OUTPUT”. 

x = 5.0 

a = 2 
 

def foo(a, d): 

    j = a 

    for i in range(a): 

        print("hello") 

        j = j - 1 

    print("world", j) 

    print("in foo", dog(j + 1, d))    
 

def dog(x, y): 

    print("in dog", y) 

    y = x + y 

    return y  
 

def cat(a): 

    a = a * a 

    print("in cat", a) 

    return a / 2 

 

a) print(dog(a, x)) 

 

 

 

 

 

b) print(cat(x))  

 

 

 

 

 

c) print(foo(a, x))  
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6) [8 pts] Given the following variables that have been defined.  What is the result and type of 

the following expressions (if it is an Error indicate that, and leave result and type blank):  

a = 2 

b = 100 

c = 3.0 

snail = "True" 

rain = a < b 

 

 Result Type Error? (yes/no) 

b / a     

c <= a    

snail[a]    

rain and b > c    

 

7) [8 pts] What is the output of the following code? If the code has an error write “Error”. 

big = {0, 1, 2, 3, 4} 

small = {4, 5} 

 

a) print(big & small) 

 

 

 

b) print(small | big) 

 

 

 

c) element = big.add(4) 

print(element) 

print(big) 

 

 

 

d) print((big - small).remove(5))) 
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8) [14 pts] a) Draw the entire environment, including all active environment frames and all user-

defined values, at the moment that the MINUS OPERATION IS performed. Feel free to draw out 

the entire environment, but be sure to CLEARLY indicate what will exist at the moment the 

MINUS operation is performed (e.g. cross out frames that no longer exist). 

b) When finished executing, what is printed out by this code? 
  

c) How many different stack frames (environment frames) are active when the minus operation 

is performed? (Hint: The global frame counts as one frame.) 
  

________________________________________________________________ 

x = 10 

y = 300 

 

def mouse(x): 

    temp = bear(x) + 2 

    return ape(x, temp) - temp 

 

def ape(y, x): 

    return y + bear(x) 

 

def bear(x): 

    return x + 3 

 

print(mouse(bear(x))) 
 

MY ANSWER:  

 

 

  

MY ANSWER:  

MY ANSWER:  
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9) [12 pts] A  matrix is a list of lists, similar to our pixel_grids from HW3, except a 

matrix should be a square (have the same number of rows as columns). For example, 

              A = [[ 1,  2,  3,  4], 

                   [ 5,  6,  7,  8], 

                   [ 9, 10, 11, 12], 

                   [13, 14, 15, 16]] 

trace(matrix) should return the sum of all the entries along the diagonal, from the upper 

left corner down to the lower right corner. For matrix A above, the trace is defined as: 

              trace(A) = 1 + 6 + 11 + 16 = 34  

If matrix is not a square (the number of rows is not the same as the number of columns), 

trace should return None. You may assume each row in the matrix has the same number of 

entries. You may assume that matrix contains at least one row and one column. 

def trace(matrix): 
 

     # Write your code here  
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10) [24 points total]  

a) [8 pts] Write a function adjusted_pixel(pixel, val)where  pixel is an integer 

representing a single pixel value and val is an integer representing the amount that this pixel 

should be adjusted. adjusted_pixel returns pixel + val.  In addition: 

 If pixel + val is less than 0 then it just returns 0.  

 If pixel + val is  greater than 255, then it just returns 255.   

You may assume pixel and val are both integers and only their sum needs to be checked to 

see if it is within the valid range for pixels: (as in HW3, the valid range is: 0 to 255). 

The call: adjusted_pixel(200, 5) would return: 205 

The call: adjusted_pixel(250, 60) would return: 255 

The call: adjusted_pixel(100, -6) would return: 94 

The call: adjusted_pixel(10, -60) would return: 0 

The call: adjusted_pixel(300, -100) would return: 200 

 

def adjusted_pixel(pixel, val): 

    # Write your code here 
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10) b)  [16 pts] Write a function adjusted_grid(pixel_grid, amount) that takes a 

pixel_grid as described in HW 3 as an argument and returns a new pixel_grid, with all 

of its pixels adjusted by amount. As in HW3, the valid range for pixels is: 0 to 255. So any pixel + 

amount that goes over 255 will be capped at 255 and any pixel + amount that goes below 0 

will be set to 0. For example:  

adjusted_grid([[1, 2], [3, 4], [7, 2]], 3) returns:  
 

         [[4, 5], [6, 7], [10, 5]] 
 

adjusted_grid([[8, 4], [5, 6]], 250) returns:  
 

   [[255, 254], [255, 255]] 

 

You may assume that the provided pixel_grid contains at least one row and one column and 

that each row will contain the same number of pixels. Do NOT change the original 

pixel_grid.  Your function should return a new pixel_grid.  

You should call adjusted_pixel (the function you wrote for part a) in your solution. 

 

def adjusted_grid(pixel_grid, amount): 

    # Write your code here 

 


