
1

Q2) You are given the following class definition:

class City:

 def __init__(self, name, population, area):

 '''name: a string representing the name of a city

 population: an integer representing the number of

 people in the city

 area: a number representing area in square miles '''

 self.name = name

 self.pop = population

 self.area = area

 def add_people(self, num_new_people):

 '''num_new_people: an integer representing the number of

 people to be added to the current population of the city '''

 self.pop = self.pop + num_new_people

 def get_pop_density(self):

 '''Returns a float representing the population density

 in the city. Population density is defined as the

 number of people per square mile. '''

 # Code not visible

a) Write code in the main function, using methods from the City class, to:

 Add 177 new people to the population of sea.

 Print the population density of lax

This code is outside of the class City.

def main():

 sea = City("Seattle", 704352, 83.78)

 lax = City("Los Angeles", 3976000, 503)

 # Your code here:

 sea.add_people(177)

 print(lax.get_pop_density())

2

Q2) (continued)

b) Describe your overall approach to testing get_pop_density. Be as specific as you can

(as close to actual code as possible).

Create multiple City objects with different values for area and population and write assert

statements that call get_pop_density() on those objects. Since get_pop_density

returns a float, you should use something like the eq() function we used in hw5 which checks

to see if you are within some epsilon of the desired value. You want tests that determine not

just that a float is returned, but that floating point division is being done (as opposed to

converting the result of integer division to a float). Although the specification is not clear

about whether or not population or area should be allowed to be zero, it was a good idea to

think about checking those edge cases. Just checking large or small values for population and

area is not specific enough. Here are a few example tests:

Should be eq() .1 (checks that fp division is being done)

ts1 = City("Test City 1", 1, 10)

assert eq(ts1.get_pop_density(), 0.1)

Varying types on area (population must be an integer)

ts2 = City("Test City 2", 10, 2.5)

assert eq(ts2.get_pop_density(), 4.0)

c) Finally, write the code for the get_pop_density method below. As shown above, this

method is a part of the class City:

 def get_pop_density(self):

 '''Returns a float representing the population density

 in the city. Population density is defined as the

 number of people per square mile. '''

 # Your code here

 return self.pop/self.area

3

Q3) Write a function called remove_words that takes two arguments: the name of a file and a

list of undesirable words that should be removed from the contents of that file. The function

should not modify the original file or create a new file, but instead it should read in the file and

return a single list containing the words from the original file, with all occurrences of the

undesirable words removed. For example, if the input file named “cool_essay.txt”

contained these 4 lines:
like happy like birthday

yep summer is totally here

lol happy summer

and you had this list of words:
words_to_remove = ['like', 'whatever', 'lol', 'yep', 'totally']

The function call:
remove_words("cool_essay.txt", words_to_remove)

would return this single list:
["happy", "birthday", "summer", "is", "here", "happy", "summer"]

You may assume that the input file contains no punctuation and all words in the input file and in

the list words_to_remove are in lowercase.

def remove_words(filename, words_to_remove):

Your code here:

clean_list = []

infile = open(filename)

for line in infile:

 line_list = line.split()

 for word in line_list:

 if word not in words_to_remove:

 clean_list.append(word)

infile.close()

return clean_list

