
List comprehensions

Ruth Anderson
UW CSE 160

Autumn 2020

Three Ways to Define a List
• Explicitly write out the whole thing:
squares = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

• Write a loop to create it:
squares = []

for i in range(11):

squares.append(i * i)

• Write a list comprehension:
squares = [i * i for i in range(11)]

• A list comprehension is a concise description of a list
• A list comprehension is shorthand for a loop

Two ways to convert Centigrade to
Fahrenheit

ctemps = [17.1, 22.3, 18.4, 19.1]

ftemps = []

for c in ctemps:

f = celsius_to_farenheit(c)

ftemps.append(f)

ftemps = [celsius_to_farenheit(c) for c in ctemps]

With a loop:

With a list comprehension:

The comprehension is usually shorter, more readable, and more efficient

Syntax of a comprehension

something
that can be
iterated

expression zero or more if clausesfor clause (required)
assigns value to the
variable x

[(x, y) for x in seq1 for y in seq2 if sim(x, y) > threshold]

zero or more
additional
for clauses

Semantics of a comprehension

[(x, y) for x in seq1 for y in seq2 if sim(x, y) > threshold]

result = []

for x in seq1:

for y in seq2:

if sim(x, y) > threshold:

result.append((x, y))

… use result …

result =

Types of comprehensions

List

[i * 2 for i in range(3)]

Set

{i * 2 for i in range(3)}

Dictionary

{ key: value for item in sequence …}
{i: i * 2 for i in range(3)}

Cubes of the first 10 natural numbers
Goal:

Produce: [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

With a loop:

cubes = []

for x in range(10):

cubes.append(x ** 3)

With a list comprehension:

cubes = [x ** 3 for x in range(10)]

Powers of 2: (20 through 210)

Goal: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

powers = [2 ** i for i in range(11)]

Lengths of elements of a list

Goal: Write a list comprehension that computes
the length of each string in the list colors.

colors = ["red", "blue", "purple", "gold", "orange"]

lengths = [**your expression goes here**]

 [3, 4, 6, 4, 6]

Even elements of a list

Goal: Given an input list nums,
produce a list of the even numbers in nums

nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]

evens = [**your expression goes here**]

 [4, 2, 6]

Dictionary of squares

Goal: Given an input list nums, produce a
dictionary that maps each number to the square
of that number.

nums = [3, 1, 4, 5, 9, 2, 6, 7]

square_dict = {**your expression goes here**}

Normalize a list

num_list = [6, 4, 2, 8, 9, 10, 3, 2, 1, 3]

total = sum(num_list)

With a loop:

for i in range(len(num_list)):

num_list[i] = num_list[i] / total

With a list comprehension:

num_list = [num / total for num in num_list]

Dice Rolls

Goal: A list of all possible dice rolls.

With a loop:
rolls = []

for r1 in range(1, 7):

for r2 in range(1, 7):

rolls.append((r1, r2))

With a list comprehension:
rolls = [(r1, r2) for r1 in range(1, 7)

for r2 in range(1, 7)]

All above-average 2-die rolls

Goal: Result list should be a list of 2-tuples:
[(2, 6), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 2), (6, 3), (6, 4), (6, 5), (6, 6)]

[(r1, r2) for r1 in range(1, 7)

for r2 in range(1, 7)

if r1 + r2 > 7]

OR

[(r1, r2) for r1 in range(1, 7)

for r2 in range(8 - r1, 7)]

Sum of above-average 2-die rolls

Goal: Result list should be a list of integers:

[r1 + r2 for r1 in range(1, 7)

for r2 in range(1, 7)

if r1 + r2 > 7]

 [8, 8, 9, 8, 9, 10, 8, 9, 10, 11, 8, 9, 10, 11, 12]

Remove Duplicates: Use Set Comprehensions
{r1 + r2 for r1 in range(1, 7)

for r2 in range(1, 7)

if r1 + r2 > 7}

 {8, 9, 10, 11, 12}

Making a Grid

Goal: A grid were each element is the sum of it's row # and column #.
(e.g. [[0, 1, 2], [1, 2, 3]])

With a loop:

grid = []

for i in range(2):

row = []

for j in range(3):

row.append(i + j)

grid.append(row)

With a list comprehension:

grid = [[i + j for j in range(3)] for i in range(2)]

A word of caution

List comprehensions are great, but they can get confusing.
Err on the side of readability.

nums = [n for n in range(100) if

sum([int(j) for j in str(n)]) % 7 == 0]
or

nums = []

for n in range(100):

digit_sum = sum([int(j) for j in str(n)])

if digit_sum % 7 == 0:

nums.append(n)

A word of caution

List comprehensions are great, but they can get confusing.
Err on the side of readability.

nums = [n for n in range(100) if

sum([int(j) for j in str(n)]) % 7 == 0]
or

def sum_digits(n):

digit_list = [int(i) for i in str(n)]

return sum(digit_list)

nums = [n for n in range(100) if

sum_digits(n) % 7 == 0]

