
Testing

Ruth Anderson

UW CSE 160

Autumn 2020

1

Testing

• Programming to analyze data is powerful

• It’s useless (or worse!) if the results are not
correct

• Correctness is far more important than speed

2

Famous examples

• Ariane 5 rocket (1996)

 fault in the software in the
inertial navigation system (link)

• Therac-25 radiation therapy
machine (1986/1987)

 Fatal overdose due to
software bugs and no external
controls (link)

3

https://hownot2code.com/2016/09/02/a-space-error-370-million-for-an-integer-overflow/
https://www.computer.org/csdl/mags/co/2017/11/mco2017110008.pdf

Testing does not prove correctness

“Program testing can be used to show the presence
of bugs, but never to show their absence!”

- Edsger Dijkstra

• Testing can only increase our confidence in
program correctness.

• Exhaustive testing (e.g. testing all possible
inputs) is generally not possible

• Instead we have to be smart about testing

4

Testing your program

• How do you know your program is right?
– Compare its output to a correct output

• How do you know a correct output?
– Real data is big

– You wrote a computer program because it is not
convenient to compute it by hand

• Use small inputs so you can compute the
expected output by hand
– We did this in HW2 and HW3 with small data sets

5

Testing parts of your program

• Often called “unit testing”

• Testing that the output of individual functions
is correct.

6

Testing ≠ debugging

• Testing: determining whether your program is
correct
– Doesn’t say where or how your program is

incorrect

• Debugging: locating the specific defect in
your program, and fixing it
2 key ideas:

– divide and conquer

– the scientific method

7

What is a test?

• A test consists of:
– an input (sometimes called “test data”)
– expected output

• Example test for sum:
– input: [1, 2, 3]
– expected output: result is 6
– write the test as: sum([1, 2, 3]) == 6

• Example test for sqrt:
– input: 3.14
– expected output: result is within 0.00001 of 1.772
– ways to write the test:
• sqrt(3.14) – 1.772 < 0.00001 and sqrt(3.14) – 1.772 > -0.00001

• -0.00001 < sqrt(3.14) – 1.772 < 0.00001

• math.abs(sqrt(3.14) – 1.772) < 0.00001

8

Test results

• The test passes if the boolean expression evaluates to True

• The test fails if the boolean expression evaluates to False

• Use the assert statement:
assert sum([1, 2, 3]) == 6

assert math.abs(sqrt(3.14) – 1.772) < 0.00001

• assert True does nothing

• assert False crashes the program

– and prints a message

9

Where to write test cases

• At the top level: is run every time you load your program
def hypotenuse(a, b):

… body of hypotenuse …

assert hypotenuse(3, 4) == 5

assert hypotenuse(5, 12) == 13

• In a test function: is run when you invoke the function
def hypotenuse(a, b):

… body of hypotenuse …

def test_hypotenuse():

assert hypotenuse(3, 4) == 5

assert hypotenuse(5, 12) == 13

test_hypotenuse()

10

(As in HW 4)

(As in HW 3)

Assertions are not just for test cases

• Use assertions throughout your code

• Documents what you think is true about your
algorithm

• Lets you know immediately when something
goes wrong

– The longer between a code mistake and the
programmer noticing, the harder it is to debug

11

Assertions make debugging easier

• Common, but unfortunate, course of events:
– Code contains a mistake (incorrect assumption or algorithm)
– Intermediate value (e.g., in local variable, or result of a function

call) is incorrect
– That value is used in other computations, or copied into other

variables
– Eventually, the user notices that the overall program produces a

wrong result
– Where is the mistake in the program? It could be anywhere.

• Suppose you had 10 assertions evenly distributed in your
code
– When one fails, you can localize the mistake to 1/10 of your

code (the part between the last assertion that passes and the
first one that fails)

12

Where to write assertions

• Function entry: are arguments of expected
type/size/value/shape?
– Place blame on the caller before the function fails

• Function exit: is result correct?

• Places with tricky or interesting code

• Assertions are ordinary statements; e.g., can
appear within a loop:
for n in myNumbers:

assert type(n) == int or type(n) == float

13

Where not to write assertions

• Don’t clutter the code
– (Same rule as for comments)

• Don’t write assertions that are certain to succeed
– The existence of an assertion tells a programmer that it

might possibly fail
a = 5

assert a == 5 # Not needed!

• Don’t need to write an assertion if the following code
would fail informatively:

assert type(name) == str

print("Hello, " + name)

• Write assertions where they may be useful for
debugging

14

What to write assertions about

• Results of computations

• Correctly-formed data structures
assert 0 <= index < len(mylist)

assert len(list1) == len(list2)

15

When to write tests

• Two possibilities:
– Write code first, then write tests
– Write tests first, then write code

• It’s best to write tests first

• If you write the code first, you remember the implementation while
writing the tests
– You are likely to make the same mistakes that you made in the

implementation (e.g. assuming that negative values would never be
present in a list of numbers)

• If you write the tests first, you will think more about the
functionality than about a particular implementation
– You might notice some aspect of behavior that you would have made a

mistake about, some special case of input that you would have
forgotten to handle

16

Write the whole test

• A common mistake:
1. Write the function
2. Make up test inputs
3. Run the function
4. Use the result as the expected output – BAD!!

• You didn’t write a full test: only half of a test!
– Created the tests inputs, but not the expected output

• The test does not determine whether the
function is correct
– Only determines that it continues to be as correct (or

incorrect) as it was before

17

Coming up with good test cases

• Think about and test “corner cases”
– abs(val)

– find_max(lst)

18

Coming up with good test cases

• Think about and test “corner cases”
– Numbers:

• int vs. float values (remember not to test for equality with
floats)

• Zero
• Negative values

– Lists:
• Empty list
• Lists containing duplicate values (including all the same

value)
• Lists in ascending order/descending order
• Mix of types in list (if specification does not rule out)

19

Tests outside of function body are for
behavior described in the specification
def roots(a, b, c):

"""Returns a list of the two roots of ax**2 + bx + c."""

What is wrong with this test?
assert roots(1, 0, -1) == [-1, 1]

• Does the specification imply that this should
be the order these two roots are returned?

• Assertions inside a routine can be used for
implementation-specific behavior

20

Tests prevent you from introducing
errors when you modify a function body

• Abstraction: the implementation details do
not matter

• As long as the specification of the function
remains the same, tests of the external
behavior of the function should still apply.

• Preventing introducing errors when you make
a change is called “regression testing”

21

Testing Approaches

• Black box testing - Choose test data without looking at
the implementation, just test behavior mentioned in
the specification

• Glass box (white box, clear box) testing -Choose test
data with knowledge of the implementation. Test that
all paths through your code are exercised and correct.
Examples:
– If statement with several elifs, make sure your test cases

will execute all branches

– For loop, test if it is executed never, once, >1, max times

22

Don’t write meaningless tests

def mean(numbers):

"""Returns the average of the argument list.

The argument must be a non-empty list of numbers."""

return sum(numbers)/len(numbers)

Unnecessary tests. Don’t write these:
mean([1, 2, "hello"])

mean("hello")

mean([])

Finally: Be aware that tests might not reveal all
existing/possible errors

23

What to test?

def isBigger(x, y):

""" Assumes x and y are ints.

Returns True if x is greater than y,

and False otherwise.

"""

24

