
Sharing, mutability, and
immutability

Ruth Anderson

UW CSE 160

Autumn 2020

1

Copying and mutation

list1 = ["e1", "e2", "e3", "e4"]

list2 = list1

list3 = list(list1) # make a copy; also “list1[:]”
print(list1, list2, list3)

list1.append("e5")

list2.append("e6")

list3.append("e7")

print(list1, list2, list3)

list1 = list3

list1.append("e8")

print(list1, list2, list3)

2

See in python tutor

https://tinyurl.com/y5re8lxd

Variable reassignment vs. Object mutation

• Reassigning a variable changes a binding, it does
not change (mutate) any object

Reassigning is always done via the syntax:
myvar = expr size = 6

list2 = list1

• Mutating (changing) an object does not change
any variable binding

Two syntaxes: Examples:
left_expr = right_expr mylist[3] = myvalue

expr.method(args…) mylist.append(myvalue)

3

Changes something about
the object that mylist
refers to

Changes what the
variables
size and list2
are bound to

Example: Variable reassignment
or Object mutation?

def no_change(lst):

"""does NOT modify what lst refers to,

instead re-binds lst"""

lst = lst + [99]

def change_val(lst):

"""modifies object lst refers to"""

lst[0] = 13

def append_val(lst):

"""modifies object lst refers to"""

lst.append(99)

lst2 = [1, 2]

no_change(lst2)

change_val(lst2)

append_val(lst2)

4

See in python tutor

https://goo.gl/vDsn34

New and old values

• Every expression evaluates to a value
– It might be a new value

– It might be a value that already exists

• A constructor evaluates to a new value:
[3, 1, 4, 1, 5, 9]

[3, 1, 4] + [1, 5, 9]

mylist = [[3, 1], [4, 1]]

• An access expression evaluates to an existing value:
mylist[1]

• What does a function call evaluate to?

5

Here the right hand side
of = is a constructor

An aside: List notation

• Possibly misleading notation:

• More accurate, but more verbose, notation:

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

6

list

list

Aside: Object identity
• An object’s identity never changes
• Can think of it as its address in memory
• Its value of the object (the thing it represents) may change

mylist = [1, 2, 3]

otherlist = mylist

mylist.append(4)

mylist is otherlist ⇒ True
mylist and otherlist refer to the exact same object

mylist == [1, 2, 3, 4] ⇒ True
The object mylist refers to is equal to the object [1,2,3,4]
(but they are two different objects)

mylist is [1, 2, 3, 4] ⇒ False
The object mylist refers to is not the exact same object
as the object [1,2,3,4]

7

See in python tutor

Moral: Use == to check for equality, NOT is

https://tinyurl.com/y654yoxg

Object type and variable type

• An object’s type never changes
• A variable can get rebound to a value of a

different type
Example: The variable a can be bound to an int or a list

a = 5 5 is always an int
a = [1, 2, 3, 4] [1, 2, 3, 4] is always a list

• A type indicates:
– what operations are allowed
– the set of representable values
– type(object) returns the type of an object

8

New datatype: tuple

A tuple represents an ordered sequence of values

Example:

“four” “score” “and” “seven” “years”

tuple

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

tuple

9

Tuple operations

Constructors
– Literals: Use parentheses
("four", "score", "and", "seven", "years")

(3, 1) + (4, 1) => (3, 1, 4, 1)

Queries
– Just like lists:

tup = ("four", "score", "and", "seven", "years")

print(tup[0]) => "four"

print(tup[-1]) => "years"

Mutators
– None!

10

Immutable datatype

• An immutable datatype is one that doesn’t have
any functions in the third category:

– Constructors

– Queries

– Mutators: None!

• Immutable datatypes:

– int, float, boolean, string, function, tuple, frozenset

• Mutable datatypes:

– list, dictionary, set

11

Remember:
Not every value may be placed in a set

• Set elements must be immutable values

– int, float, bool, string, tuple

–not: list, set, dictionary

• The set itself is mutable (e.g. we can add
and remove elements)

• Aside: frozenset must contain immutable values and is itself immutable
(cannot add and remove elements)

12

Remember: Not every value is
allowed to be a key in a dictionary

• Keys must be immutable values

– int, float, bool, string, tuple of immutable types

– not: list, set, dictionary

• The dictionary itself is mutable (e.g. we can
add and remove elements)

13

Python’s Data Model

• All data is represented by objects
• Each object has:

– an identity
• Never changes
• Think of this as address in memory
• Test with is (but you rarely need to do so)

– a type
• Never changes

– a value
• Can change for mutable objects
• Cannot change for immutable objects
• Test with ==

14

Mutable and Immutable Types

• Immutable datatypes:

– int, float, boolean, string, function, tuple, frozenset

• Mutable datatypes:

– list, dictionary, set

Note: a set is mutable, but a frozenset is immutable

15

Tuples are immutable
Lists are mutable

def updaterecord(record, position, value):

"""Change the value at the given position"""

record[position] = value

mylist = [1, 2, 3]

mytuple = (1, 2, 3)

updaterecord(mylist, 1, 10)

print(mylist)

updaterecord(mytuple, 1, 10)

print(mytuple)

16

See in python tutor

https://tinyurl.com/y4he4m2p

Increment Example
def increment(uniquewords, word):

"""increment the count for word"""

if word in uniquewords:

uniquewords[word] = uniquewords[word] + 1

else:

uniquewords[word] = 1

mywords = dict()

increment(mywords, "school")

print(mywords)

def increment(value):

"""increment the value???"""

value = value + 1

myval = 5

increment(myval)

print(myval) 17

See in python tutor

https://tinyurl.com/y3k8zyhl

Increment Example (cont.)

>>> def increment(uniquewords, word):

... """increment the count for word"""

... if word in uniquewords:

uniquewords[word] = uniquewords[word] + 1

else:

uniquewords[word] = 1

>>> mywords = dict()

>>> increment(mywords, "school")

>>> print(mywords)

{'school': 1}

>>> def increment(value):

... """increment the value???"""

... value = value + 1

>>> myval = 5

>>> increment(myval)

>>> print(myval)

5
18

