Welcome to CSE 160!

Computational methods permeate the sciences, engineering, and even the humanities. You need a foundational understanding of computation and practical data analysis in order to be successful in science, engineering, business, and other professions.

CSE 160, “Introduction to Data Programming with Applications”, is an introductory programming class that meets this need. You will learn to write small programs in the Python programming language to solve real-world scientific and engineering problems. This will be useful in your classes, your research, and your jobs.


In CSE 160:

Why another programming class?

UW offers a variety of excellent introductory programming classes. No one of them is best for all students. We provide a webpage to help you decide among them. That webpage also contains information about substituting CSE 160 for other UW requirements.

Some characteristics of CSE 160 include:

Why Python?

Many programming languages and computational tools exist to help you analyze data. These include Excel, MATLAB, R, C/C++, Java, and others. Python is a particularly good choice. It is a complete programming language. It is simple to learn and easy to write and read. You can get started with it right away. It comes with excellent libraries that will simplify your programs.


The Goals section described the high-level goals of the class. Its real objective is to teach you basic problem analysis and computational thinking, and to enable you to apply them in practice to extract meaning from a dataset. Doing so requires you to logically organize data; to design algorithms; to formulate them in a way that computers can execute; to test, identify problems, and find solutions; and to communicate the results.

At a lower level, here are the topics that the class teaches to help you achieve the course's goals.

Python concepts:
Expressions, values, types, variables, programs & algorithms, control flow, file I/O, the Python execution model
Data structures:
List, set, dictionary (mapping), tuple, graph (from a third-party library)
List slicing (sublist), list comprehension (shorthand for a loop)
Mutable and immutable data structures
Distinction between identity and (abstract) value
Procedural abstraction, functions as values, recursion, function design methodology
Data abstraction (introduction only, no in-depth coverage):
Modules, objects
Testing and debugging:
Test design, coverage, & adequacy
Debugging strategies: divide & conquer, the scientific method
Speed of algorithms
Statistical hypothesis testing
Visualization (graphing/plotting results)
Program decomposition


The only prerequisite for the class is high school math.

The class does not assume any previous programming experience. — in fact, if you have already taken CSE 143 or any 300-level CSE class, you are not allowed to take CSE 160.

We assume that you are familiar with basic computer usage — you are comfortable running applications, navigating the file system (say, with a tool like Windows Explorer), editing documents with a word processor or text editor, and so forth.

Any student can succeed in CSE 160. But, CSE 160 is not an easy class. To succeed requires you to work diligently, to be organized and systematic, to follow and give instructions precisely, and to ask questions when you are confused. The staff knows you can succeed, and we will help you succeed.

Class logistics: times and staff

Lectures: MWF 1:30-2:20, in GWN 301
Sections: AA Th 11:30-12:20, room MEB 235, AB Th 12:30-1:20, room SAV 137, AC Th 1:30-2:20, room SAV 156, AD Th 2:30-3:20, room SAV 136, AE Th 3:30-4:20, room MGH 254
The lecture, section, and office hours times are also provided on the schedule page while the homework link lists HW due dates.

You may use the class discussion board on the Canvas site to ask questions — and to give help to other students. You can optionally subscribe to discussion board notifications, so that you receive email whenever a new posting is made on the discussion board.

Instructor: Emilia Gan
TAs: Ollin Boer Bohan, Weikai Hu, Ofek Inbar, Weihan (Joy) Ji, Joely Nelson, Jack Venberg
Staff email:

You can also email the staff through the email feature on the Canvas website. By sending your email to the cse160-19wi-staff list you are likely to get a faster and more authoritative response than if you send email to individual staff members. We will answer as quickly as possible, typically within 24 hours. You can also send anonymous email if you are more comfortable with that, though it does not let us respond to you to better understand and solve your problem.

Asking Questions: If you have questions, please ask us! We want to help you, but we are bad at reading minds.
Your first stop for most questions should be the class Discussion Board on the Canvas site (remember not to post your program there, see Discussion Board etiquette below). For questions involving personal matters send email the instructor: Emilia Gan at cs. Detailed debugging is best handled in office hours.

Office hours are listed on the schedule. You are also welcome to set up additional meeting times with the course staff.

Discussion Board etiquette: You should never post the code to solve a homework assignment (in whole or in part) on the class discussion board. This includes posting partial code in progress in order to ask what is wrong with it. Before posting your question, remember to check the discussion board (you can use the search feature) to see if it has already been asked. We encourage students to ask and answer questions on the Discussion Board.

Email etiquette: When using the staff email alias (but NOT the Discussion Board), it is always a good idea to attach the current version of your code to your message, so that the staff can better understand and reproduce your problem. In every message, always be explicit about the exact thing you did, exactly what the result was, and what you had expected to happen. (For example, cut and paste or attach the exact output, rather than just saying “something went wrong” or describing it vaguely.) This will enable us to help you more effectively.

Lecture etiquette: We encourage you to use your laptops during class for activities that help you get the most from lecture - following along with slides, typing Python code into the interpreter, taking notes. However talking and doing activites not relevant to lecture (e.g. checking emails, playing games, surfing the web) can be incredibly distracting to those around you. Please be respectful and avoid these activities during class.

Resources: books and software

The class uses three resources. Two are freely available on the Internet, and the third is available at the bookstore.

Readings from multiple sources are recommended for each lecture — see the class Canvas site for details. While much of what you need to know will be discussed in lecture, most people find reading one or more resources either before or after lecture useful.

The assigned readings are a great place to get started, but you will also need to use other materials to master Python. We also encourage you to use the many Python resources that are available on the Web. Start with the official Python documentation, whose most useful components include a beginner's guide, a tutorial, a list of all the functions built into Python, and searchable online documentation.

Software: Please see the CSE 160 computing resources webpage for information about installing Python on your own computer.

Tools: Philip Guo's Python Tutor lets you execute a program line by line, and it draws the variables and data structures that the program creates during execution.

After CSE 160: If you wish to learn more beyond what CSE 160 teaches you, see the self-study suggestions.

Assignments and grading

Assignments are posted on the class Canvas site. As a convenience, due dates are also listed on a separate homework webpage. Assignment submission forms are linked to on their respective specification documents.

Your course grade is determined by:

You will complete approximately one programming assignment each week. There are often some written questions on each assignment as well as a Canvas survey that must be filled out as well.

We urge you in the strongest possible terms to get started on your assignments early. This approach will take you much less time overall than if you try to do all the work at once at the last minute. An efficient approach is to start work, then take a break when needed. This lets your subconscious continue to work on the problem, or enables you to return to it with a fresh perspective and renewed energy. Furthermore, you will be able to ask for and receive help.

For 19wi the assignments and final project will count approximately as follows:

The exam grade will be determined by two written, in-class, closed-book exams.

Your participation grade may include check-ins (on-line questions and programming exercises), participation in activities during quiz section (attendance at quiz section is expected) and lecture, as well as other course activities.

If you find an error in our grading, please bring it to our attention within one week of that item being returned.

Grading on a “curve”

Grading for this class is not curved in the sense that the average is set at (say) 3.0 and half of the class must receive a grade lower than that. If everyone does well and shows mastery of the material, everyone can receive an A. If no one does well (this is unlikely), then everyone can receive a C. Furthermore, your grade is not affected by someone else dropping the class — whether that person was doing better or worse than you.

Grading for this class is curved in the sense that we do not have a pre-defined mapping from homework and exam scores to a final GPA. There is no pre-determined score (e.g., 90% of all possible points) that earns a 4.0 or a 3.5 or a 2.0 or any other grade. To determine the final grade, we will ask questions like “Did this student master the material?”, and the English descriptions in the Sample UW Grading Guidelines.

Late work

Assignments are due on different days of the week, generally at 11pm, often on Wednesday or Friday. Due dates will be listed on each assignment and shown on the schedule.

Each student is permitted 2 late days per assignment. Each late day permits you to submit an assignment up to 24 hours late. Note that some assignments (e.g. HW1, HW4, HW5) have multiple parts. Each part of the assignment must share the 2 late days permitted for a single assignment. For example, submitting HW4-part1 1 day late and HW4-part2 1 day late will consume all the allotted late days for HW4. The first late day carries no penalty, while the second late day results in a 5% grading penalty.

The late day policy is intended to reduce stress and allow you some flexibility in your time management. Please be aware that late submissions will result in time pressures for the graders and potentially delay release of assignment grades. Consequently, do use late days only when you need to. In cases where you may need even more time to complete work (e.g. medical emergencies such as those involving hospitalization or other unforeseen circumstances), please contact the instructor as soon as you are aware there is an issue.

Important: If you have already submitted work for an assignment, but plan on resubmitting an improved version AFTER the deadline, please send email to so we know you will be submitting work late. This way we won't grade your earlier submission and will know to wait for your late submission. You do not need to do this every time you submit late, just if you already submitted something that we might assume was your final submission. (We don't want to grade your homework more than once!)

Academic honesty

Integrity is a crucial part of your character and is essential for a successful career. We expect you to demonstrate integrity in CSE 160 and elsewhere. In particular, your assignments must represent your own work and understanding. Academic misconduct such as plagiarism is grounds for failing the class and can be dealt with by a University committee.

The following guidelines apply unless an assignment specifically states otherwise. If you have any questions about acceptable behavior, please ask the course staff. We will be happy to answer your questions!

You are encouraged to talk to your classmates about problem solution ideas, and you may reuse those ideas, but you may not examine nor reuse any other student's code - this includes code from students who have taken this course or a similar one in previous quarters. You are not allowed to copy code from any source — other students, acquaintances, the Web, etc. (Copying is forbidden via cut-and-paste, via dictation or transcription, via viewing and memorizing, etc.) Your solution may utilize Python libraries that are available in the Anaconda Python distribution that we have discussed in lecture. You are encouraged to use books, the Internet, your friends, etc. to get solution ideas, but you may not copy/transcribe/transliterate code: get the idea, close the other resource, and then (after enough time that the idea is in your long-term, not short-term, memory) generate the code yourself based on your own understanding.

Python Example Code

You may sometimes find it useful to do a web search to find snippets of Python code that performs some particular operation, and paste it into your own programs. (Remember: It is NEVER acceptable to examine or re-use code from another student, including students who have taken this course or a similar one in previous quarters.) This can be an acceptable short-term strategy if it helps you get past a particular roadblock. However, you must later go back, remove the code you did not write yourself, and write the replacement on your own, from scratch. Recall that the class policy is that you must write everything that you turn in. Violating this is academic dishonesty (cheating), which can lead to a variety of negative consequences for you, including failing the class and further disciplinary action.

It is your responsibility to understand everything that you turn in. We reserve the right to ask you to explain any part of your homework assignment. If you are not able to explain what it means and why you chose it, that is presumed evidence of copying/cheating.

Later, when you are writing your own programs after you complete CSE 160, it's fine to copy others' code if the license permits such use. (Copying one or two lines is usually acceptable regardless of the license.) However, in your future career, please remember two things:

  1. It is your ethical duty to properly cite the source of any code that you did not write yourself. Give credit where credit is due.
  2. You should still understand the code that you copied. Otherwise, if and when the code does not work (for example, maybe the original author made an assumption that is not true in your program, or worse yet, it has a bug!), you will lose more time debugging than you saved by copying.

Re-grade Policy

If you have a question about an assignment or exam that was returned to you, please don't hesitate to ask a TA or the instructor about it during their office hours. Learning from our mistakes is often one of the most memorable ways of learning!

If after discussing your question with a TA or the instructor you feel that your work was misunderstood or otherwise should be looked at again to see if an appropriate grade was given we ask that you submit a re-grade request as follows:


All of the information in this document is subject to change throughout the quarter. The course staff will announce any substantive changes.