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Some quotes on ML

● “A breakthrough in machine learning would be worth ten Microsofts”  
○ -Bill Gates

● “Machine learning is the next Internet”
○ Tony Tether (DARPA director)

● “Machine learning is going to result in a real revolution” 
○ Greg Papadopoulos (Sun CTO)

● “Machine learning is today’s discontinuity”
○ Jerry Yang (Yahoo founder)

● “So hot right now”
○ Alex Zhou (CSE 160 TA)



How do we define learning?

● Given the past, guess the future

● Generalize and adapt to new situations and information

● Get better with practice

How do we measure if someone or something has learned?

Make it take a test!



What is Machine Learning?

https://blog.resellerclub.com/wp-content/uploads/2017/08/machine-learning-blog-banner.j
pg

https://xkcd.com/1838/

https://www.iuvotech.com/tony-stark-needs-it-dr-plan/



What is Machine Learning?

https://xkcd.com/1838/



Common Applications

● Classifying documents (e.g., “is this email spam?”)
● Labeling/captioning images (e.g., “who’s in this picture?”, “what’s happening 

in this picture?)
● Predicting the future: weather, finance, medical outcomes
● Recommending content (e.g., movies, books, music)
● Fraud detection (e.g. detecting money laundering)
● Self driving cars (a combination of a number of these and other problems)



Today

ML a normal part of our lives:

● Video/image processing
● Speech/language processing
● Controlling robots
● Computational biology
● Healthcare analysis
● Annoying recommendation systems

When people say “AI” these days, they usually mean “ML”

Many of these problems are too complex to solve “by hand”



Is ML Magic?

More like gardening

Successful plants (programs) require:

● Seeds (algorithms)
● Nutrients (data)
● A gardener (ML expert)

We can kind of predict how gardens will 
grow, but can’t be certain, and our 
understanding is still evolving!



What does (Trained, Supervised) ML Look like?

● Training: Given a training set 
of input/output pairs (x, y), 
train a function f where f(x) 
reproduces y.

● Testing: Take a test set of 
input/output pairs (x, y) and 
see how accurately f(x) 
matches with y



Input/Output? (x,y)?

Our x is usually a vector consisting of the values of different characteristics 
(features), can be anything.:

● Age
● Height
● Rainfall
● Time spent on a screen
● Color values of a pixel

Our y is some sort of output 
associated with our features:
● Some real value (regression)
● A label (classification)
● An ordering (ranking)
● A vector (multivariate 

regression/classification)
● ...



Decision Trees (or, 20 Questions!)

● Classification algorithm
● Common day-to-day decision-making process
● 20 Questions

○ Start general
○ Get more specific
○ Settle on an educated guess

● Decision tree
○ Examine training data
○ Decide how to separate it at different levels
○ Settle on an educated guess



Decision Tree Example

Not sure if you need to act like you know someone

You know (xs, features):
● If you recognize them
● If they recognize you
● They know your name
● They’re holding a clipboard

Want to decide (y, label):
● Do I act like I know them? (Y/N, 1/0)



Decision Tree Example



Decision Trees in Python

Implemented as part of sklearn. The code to use it fits on a slide:

from sklearn import tree
X = [[20], [20], [20], [30], [30], [30]]
Y = [1, 1, 1, 0, 0, 0]
model = tree.DecisionTreeClassifier()
model.fit(X, Y)



Regression

Imagine now we want to predict how many brownies I can eat, right now.

We might consider as features:

● Time since I last ate
● Calories I’ve consumed today
● How many calories I’ve burned today
● How lonely I’m feeling?



Linear Regression

A model y = mx + b, with two parameters (m, b).

Draw the “best” line.



Linear Regression in Python

Implemented as part of sklearn. The code to use it fits on a slide:

from sklearn import linear_model
X = [[1], [2], [3], [4]]
Y = [2, 4, 6, 8]
model = linear_model.LinearRegression()
model.fit(X, Y)



Linear Regression

A model y = mx + b, with two parameters (m, b).

Draw the “best” line. What does that mean?



Squared Error

Remember Homework 6?

● The difference between predicted and actual, squared, summed across all 
examples

● Find the line that minimizes squared error (in 2 dimensions, plane in 3 
dimensions...)

○ Does this by choosing weights (m, b); changing the weights moves the line.

● How do we find the best weights?
○ Derivatives of the loss: see MATH 12X series
○ Tons of features (high dimensional) data?
○ Expensive/difficult to just compute the whole gradient
○ Loss functions weird in high dimensions



How does training work/Gradient Descent

Let’s say we’re playing a fun game: Blindfolded Mountain Descent!

Find a valley before you 
freeze to death!



How does training work/Gradient Descent

● Intuitively: if you want to find a low-altitude point, try to move downhill.

High Error (Bad)

Low Error (Good)

● “Movement” is 
adjustments to model 
parameters (m, b).

● “Altitude” is the error 
(how bad is that m, b at 
predicting the data?).

m

 b



Neural Networks

● Not the same as biological neural networks (much more limited!)
● Still the most heavily-parameterized models money can buy.
● Can learn a mathematical function mapping from one set of points → another 

set of points.
○ Chess/Go boards → good moves to play 

(AlphaZero, beat world champion)
○ Text to spoken audio (WaveNet, in Google Assistant)
○ Random noise to ramen noodles?

(Progressive GANs, kinda pointless?)

● Trained by gradient descent (sorta)
○ Also backpropagation

http://www.youtube.com/watch?v=Rnj2RLycHA4


How do Neural Networks work?

● Think linear regression from before, but grown up...
● Instead of y = mx + b, it’s 

Y1 = σ(W1 X + B1), 
Y2 = σ(W2 Y1 + B2) … 
Yn = σ(Wn Yn-1 + Bn)

● What’s different?
○ Everything has more dimensions (so B1 might be [0.1, 0.5, -0.1, 0.5, 10, ...]).
○ More layers! More parameters! Lots of Ws. Lots of Bs.

○ There’s a “nonlinearity” σ, which squishes things 
before passing them to next layer. Without this,
there’d be no point in stacking layers...



When a model does much better on the 
training data than on the testing data, we 
say it is overfitting (high variance). This 
is a student who memorizes examples 
instead of learning general rules.

When a model does poorly on all data, we 
say it is underfitting (high bias). This is a 
student who ignores the specifics of each 
problem and just tries to answer them all 
the same (incorrect) way.

More parameters: Overfitting, Bias, and Variance



Solving the Bias-Variance Tradeoff

1998 2014

If your model overfits, get more data!

1998 2010-

If your model underfits, add more parameters!



Neural Networks in Python

Unless you’re dealing with very high-dimensional data (images, audio, text), it’s 
probably overkill. But it’s really powerful!

Neural net starter kit:
● Google Colab (online Jupyter notebooks with GPUs)
● Keras (simple-ish framework for writing neural nets in Python)

○ Other options: Torch, Tensorflow

● Patience; getting everything set up can be painful and neural nets are finicky 
:P



Things we didn’t cover

● Train/Dev/Test set splits
● Backpropagation
● Cross-validation
● Unsupervised learning
● Regularization
● Ensembling
● Other neural net forms (CNNs, LSTMs...)



Learning More

● Decision Trees: A visual introduction to machine learning: 
http://www.r2d3.us

● Neural Nets: How Machines *Really* Learn and But What *is* a Neural 
Network?

● More Neural Nets: Tensorflow playground: 
https://playground.tensorflow.org/, CS231n Lectures, course.fast.ai

● Hal Daume’s free machine learning textbook: http://ciml.info/
● CSE 416/446

http://www.r2d3.us
https://www.youtube.com/watch?v=wvWpdrfoEv0
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://playground.tensorflow.org/
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
http://course.fast.ai/
http://ciml.info/

