
Design Exercise

UW CSE 160

Spring 2018

1

Exercise

Given a problem description, design a module to
solve the problem

Specify a set of functions

• For each function, provide

– the name of the function

– a doc string for the function

2

Problem: Text analysis

Design a module for basic text analysis with the following
capabilities:

• Compute the total number of words in a file

• Find the 10 most frequent words in a file.

• Find the number of times a given word appears in the
file.

Also show how to use the interface by computing the top
10 most frequent words in the file testfile.txt

3

Compare a Few Potential Designs

• Consider the 3 designs

• For each design, state positives and negatives

• Which one do you think is best, and why?

4

Text Analysis Module, Version 1

def word_count(filename, word):

"""Given a filename and a word, return the count

of the given word in the given file."""

def top10(filename):

"""Given a filename, return a list of the top 10

most frequent words in the given file, from most

frequent to least frequent."""

def total_words(filename):

"""Given a filename, return the total number of

words in the file."""

client program to compute top 10:

result = top10("somedocument.txt")

5

• Pros:

• Cons:

6

Text Analysis Module, Version 2
def read_words(filename):

"""Given a filename, return a list of words in the

file."""

def word_count(wordlist, word):

"""Given a list of words and a word, returns a pair

(count, allcounts_dict). count is the number of

occurrences of the given word in the list, allcounts_dict

is a dictionary mapping words to counts."""

def top10(wordcounts_dict):

"""Given a dictionary mapping words to counts, return

a list of the top 10 most frequent words in the

dictionary, from most to least frequent."""

def total_words(wordlist):

"""Return total number of words in the given list."""

client program to compute top 10:

word_list = read_words("somedocument.txt")

(count, word_dict) = word_count(word_list, "anyword")

result = top10(word_dict) 7

• Pros:

• Cons:

8

Text Analysis Module, Version 3
def read_words(filename):

"""Given a filename, return a dictionary mapping

each word in filename to its frequency in the file"""

def word_count(word_counts_dict, word):

"""Given a dictionary mapping word to counts, return

the count of the given word in the dictionary."""

def top10(word_counts_dict):

"""Given a dictionary mapping word to counts, return

a list of the top 10 most frequent words in the

dictionary, from most to least frequent."""

def total_words(word_counts_dict):

"""Given a dictionary mapping word to counts, return

the total number of words used to create the

dictionary"""

client program to compute top 10:

word_dict = read_words("somedocument.txt")

result = top10(word_dict)
9

• Pros:

• Cons:

10

Changes to text analysis problem

• The users have requests some changes….

– Ignore stopwords (common words such as “the”)
• A list of stopwords is provided in a file, one per line.

– Show the top k words rather than the top 10.

• How would the three designs handle these
two changes?

11

Design criteria

• Ease of use vs. ease of implementation
– Module may be written once but re-used many times

• Generality
– Can it be used in a new situation?

– Decomposability: Can parts of it be reused?

– Testability: Can parts of it be tested?

• Documentability
– Can you write a coherent description?

• Extensibility: Can it be easily changed?

12

From Word Counts Exercise:

def read_words(filename):

"""Given a filename, return a dictionary mapping each word

in filename to its frequency in the file"""

wordfile = open(filename)

worddata = wordfile.read()

word_list = worddata.split()

wordfile.close()

wordcounts_dict = {}

for word in word_list:

if word in wordcounts_dict:

wordcounts_dict[word] = wordcounts_dict[word] + 1

else:

wordcounts_dict[word] = 1

return wordcounts_dict

13

This “default” pattern is
so common, there is a
special method for it.

setdefault

def read_words(filename):

"""Given a filename, return a dictionary mapping each

word in filename to its frequency in the file"""

wordfile = open(filename)

worddata = wordfile.read()

word_list = worddata.split()

wordfile.close()

wordcounts_dict = {}

for word in word_list:

count = wordcounts_dict.setdefault(word, 0)

wordcounts_dict[word] = count + 1

return wordcounts_dict

14

This “default” pattern is
so common, there is a
special method for it.

setdefault

for word in word_list:

if word in wordcounts_dict:

wordcounts_dict[word] = wordcounts_dict[word] + 1

else:

wordcounts_dict[word] = 1

VS:

for word in word_list:

count = wordcounts_dict.setdefault(word, 0)

wordcounts_dict[word] = count + 1

setdefault(key[, default])
• If key is in the dictionary, return its value.
• If key is NOT present, insert key with a value of default, and return default.
• If default is not specified, the value None is used.

15

Will NOT be on
final exam

