
Debugging

Ruth Anderson

UW CSE 160

Spring 2018

1

Example: Write a function

Write a function that will return the set of a
user’s friends with a particular user removed
from that set.

2

The problem

What you want
your program to do

What your program does

Not the same!

☹

3

Debugging tools

• Python error message

• assert

• print

• Python interpreter

• Python Tutor (http://pythontutor.com)

• Python debugger

• Best tool:

4

http://pythontutor.com/

Two key ideas

1. The scientific method

2. Divide and conquer

If you master those, you will find debugging
easy, and possibly enjoyable

5

The scientific method

1. Create a hypothesis
2. Design an experiment to test that hypothesis

– Ensure that it yields insight

3. Understand the result of your experiment
– If you don’t understand, then possibly suspend your main line of

work to understand that

Tips:
• Be systematic

– Never do anything if you don't have a reason
– Don’t just flail

• Random guessing is likely to dig you into a deeper hole

• Don’t make assumptions (verify them)

6

Example experiments

1. An alternate implementation of a function

– Run all your test cases afterward

2. A new, simpler test case

– Examples: smaller input, or test a function in
isolation

– Can help you understand the reason for a failure

7

Your scientific notebook

Record everything you do
• Specific inputs and outputs (both expected and actual)
• Specific versions of the program

– If you get stuck, you can return to something that works
– You can write multiple implementations of a function

• What you have already tried
• What you are in the middle of doing now

– This may look like a stack!

• What you are sure of, and why

Your notebook also helps if you need to get help or reproduce
your results

8

Read the error message

Traceback (most recent call last):

File "nx_error.py", line 41, in <module>

print friends_of_friends(rj, myval)

File "nx_error.py", line 30, in friends_of_friends

f = friends(graph, user)

File "nx_error.py", line 25, in friends

return set(graph.neighbors(user))#

File "/Library/Frameworks/…/graph.py", line 978, in neighbors

return list(self.adj[n])

TypeError: unhashable type: 'list'

Note: This is what you see when running from command line. In Canopy you
also see the surrounding code and a link to take you to the line with the error.

List of all exceptions (errors):

http://docs.python.org/2/library/exceptions.html#bltin-exceptions

Two other resources, with more details about a few of the errors:

http://inventwithpython.com/appendixd.html

http://www.cs.arizona.edu/people/mccann/errors-python

Call stack or traceback

First function that was
called (<module>
means the interpreter)

Second function
that was called

Last function that
was called (this one
suffered an error)

The error message:
daunting but useful.
You need to understand:
• the literal meaning of

the error
• the underlying

problems certain
errors tend to suggest

9

http://docs.python.org/2/library/exceptions.html#bltin-exceptions
http://inventwithpython.com/appendixd.html
http://www.cs.arizona.edu/people/mccann/errors-python

Common Error Types

• AssertionError
– Raised when an assert statement fails.

• IndexError
– Raised when a sequence subscript is out of range.

• KeyError
– Raised when a mapping (dictionary) key is not found in the set of existing keys.

• KeyboardInterrupt
– Raised when the user hits the interrupt key (normally Control-C or Delete).

• NameError
– Raised when a local or global name is not found.

• SyntaxError
– Raised when the parser encounters a syntax error.

• IndentationError
– Base class for syntax errors related to incorrect indentation.

• TypeError
– Raised when an operation or function is applied to an object of inappropriate type.

10

Divide and conquer

• Where is the defect (or “bug”)?
• Your goal is to find the one place that it is
• Finding a defect is often harder than fixing it

• Initially, the defect might be anywhere in your program
– It is impractical to find it if you have to look everywhere

• Idea: bit by bit reduce the scope of your search
• Eventually, the defect is localized to a few lines or one line

– Then you can understand and fix it

• 4 ways to divide and conquer:
A. In the program code
B. In test cases
C. During the program execution
D. During the development history

11

A. Divide & conquer in the program code

• Localize the defect to part of the program
– e.g., one function, or one part of a function

• Code that isn’t executed cannot contain the defect

3 approaches:
• Test one function at a time
• Add assertions or print statements

– The defect is executed before the failing assertion (and maybe after a
succeeding assertion)

• Split complex expressions into simpler ones
Example: Failure in

result = set({graph.neighbors(user)})

Change it to
nbors = graph.neighbors(user)

nbors_set = {nbors}

result = set(nbors_set)

The error occurs on the “nbors_set = {nbors}" line
12

B. Divide & conquer in test cases

• Your program fails when run on some large
input

– It’s hard to comprehend the error message

– The log of print statement output is overwhelming

• Try a smaller input

– Choose an input with some but not all
characteristics of the large input

– Example: duplicates, zeroes in data, …

13

C. Divide & conquer in execution time
via print (or “logging”) statements

• A sequence of print statements is a record of the
execution of your program

• The print statements let you see and search
multiple moments in time

• Print statements are a useful technique, in moderation

• Be disciplined
– Too much output is overwhelming rather than informative

– Remember the scientific method: have a reason (a
hypothesis to be tested) for each print statement

– Don’t only use print statements

14

D. Divide & conquer
in development history

• The code used to work (for some test case)
• The code now fails
• The defect is related to some line you changed

• This is useful only if you kept a version of the
code that worked (use good names!)

• This is most useful if you have made few changes
• Moral: test often!

– Fewer lines to compare
– You remember what you were thinking/doing recently

15

A metaphor about debugging

If your code doesn’t work as
expected, then by definition you
don’t understand what is going on.

• You’re lost in the woods.
• You’re behind enemy lines.
• All bets are off.
• Don’t trust anyone or anything.

Don’t press on into unexplored
territory -- go back the way you
came!
(and leave breadcrumbs!)

You’re trying to “advance the front lines,” not “trailblaze”
16

Time-Saving Tip:
Make Sure you’re Debugging the Right Problem

• The game is to go from “working to working”

• When something doesn’t work, STOP!
– It’s wild out there!

• FIRST: go back to the last situation that worked properly.
– Rollback your recent changes and verify that everything still works as

expected.

– Don’t make assumptions – by definition, you don’t understand the
code when something goes wrong, so you can’t trust your
assumptions.

– You may find that even what previously worked now doesn’t

– Perhaps you forgot to consider some “innocent” or unintentional
change, and now even tested code is broken

17

A bad timeline

• A works, so celebrate a little

• Now try B

• B doesn’t work

• Change B and try again

• Change B and try again

• Change B and try again

…

18

A better timeline
• A works, so celebrate a little

• Now try B

• B doesn’t work

• Rollback to A

• Does A still work?

– Yes: Find A’ that is somewhere between A and B
– No: You have unintentionally changed something else, and there’s no

point futzing with B at all!

These “innocent” and unnoticed changes happen more than you would think!
• You add a comment, and the indentation changes.
• You add a print statement, and a function is evaluated twice.
• You move a file, and the wrong one is being read
• You’re on a different computer, and the library is a different version

19

Once you’re on solid ground
you can set out again

• Once you have something that works and
something that doesn’t work, it’s only a matter of
time

• You just need to incrementally change the
working code into the non-working code, and the
problem will reveal itself.

• Variation: Perhaps your code works with one
input, but fails with another. Incrementally
change the good input into the bad input to
expose the problem.

20

Simple Debugging Tools

print

– shows what’s happening whether there’s a problem or not

– does not stop execution

assert

– Raises an exception if some condition is not met

– Does nothing if everything works

– Example: assert len(rj.edges()) == 16

– Use this liberally! Not just for debugging!

21

