Introduction to Python and programming

Ruth Anderson
UW CSE 160
Spring 2018
1. Python is a calculator
2. A variable is a container
3. Different types cannot be compared
4. A program is a recipe

Colvin Run Mill Corn Bread
- 1 cup cornmeal
- 1 cup flour
- ½ teaspoon salt
- 4 teaspoons baking powder
- 3 tablespoons sugar
- 1 egg
- 1 cup milk
- ¼ cup shortening (soft) or vegetable oil

Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8x8 or 9x9 baking pan. Bake at 425 degrees for 20-25 minutes.
0. Don’t panic!

• CSE 160 is for beginners to programming
 – (If you know how to program, you don’t belong)

• You can learn to program in 10 weeks
 – You will work hard
 – We will work hard to help you

• Ask questions!
 – This is the best way to learn
1. Python is a calculator
You type *expressions*. Python computes their *values*.

- 5
- 3 + 4
- 44 / 2
- 2 ** 3
- 3 * 4 + 5 * 6
 - If precedence is unclear, use parentheses
- (72 – 32) / 9 * 5
An expression is evaluated from the inside out

• How many expressions are in this Python code?

```
(72 - 32) / 9.0 * 5
```

```
(72 - 32) / 9.0 * 5
(40) / 9.0 * 5
40 / 9.0 * 5
4.44 * 5
22.2
```
Another evaluation example

\[
\frac{(72 - 32)}{(9.0 \times 5)}
\]

\[
\frac{(40)}{(9.0 \times 5)}
\]

\[
40 \div (9.0 \times 5)
\]

\[
40 \div (45.0)
\]

\[
40 \div 45.0
\]

.888
2. A variable is a container
Variables hold values

• Recall variables from algebra:
 – Let $x = 2$...
 – Let $y = x$...

• In Python assign a variable: "`varname = expression`"

```python
pi = 3.14
pi
avogadro = 6 * 10 ** 23
avogadro
22 = x  # Error!
```

• Not all variable names are permitted
Changing existing variables ("re-binding" or "re-assigning")

\[x = 2 \]
\[x \]

\[y = 2 \]
\[y \]
\[x = 5 \]
\[x \]

\[y \]

- "=" in an assignment is not a promise of eternal equality
 - This is different than the mathematical meaning of "="

- Evaluating an expression gives a new (copy of a) number, rather than changing an existing one
How an assignment is executed

1. Evaluate the right-hand side to a value
2. Store that value in the variable

```python
x = 2
print x
y = x
print y
z = x + 1
print z
x = 5
print x
print y
print z
```

State of the computer:

Printed output:

To visualize a program’s execution: http://pythontutor.com Link to this code [here](http://pythontutor.com)
How an assignment is executed

1. Evaluate the right-hand side to a value
2. Store that value in the variable

```
x = 2
print x
y = x
print y
z = x + 1
print z
```

State of the computer:
```
  x: 2
  y: 2
  z: 3
```

Printed output:
```
2
2
3
```

To visualize a program’s execution:

http://pythontutor.com Link to this code here
More expressions: Conditionals
(value is True or False)

22 > 4
22 < 4
22 == 4
x = 100 # Assignment, not conditional!
22 = 4 # Error!
x >= 5
x >= 100
x >= 200
not True
not (x >= 200)
3 < 4 and 5 < 6
4 < 3 or 5 < 6
temp = 72
water_is_liquid = temp > 32 and temp < 212

Numeric operators: +, *, **
Mixed operators: <, >=, ==
Boolean operators: not, and, or

See in python tutor or here
More expressions: strings

A string represents text

'Python'
`this_class = "CSE 160"
"

Empty string is not the same as an unbound variable

Operations on strings:

• Length:
 `len(this_class)`

• Concatenation:
 "Ruth" + 'Anderson'

• Containment/searching:
 '0' in this_class
 "O" in this_class
3. Different types cannot be compared
Types of values

• Integers (int): −22, 0, 44
 – Arithmetic is exact
 – Some funny representations: 12345678901

• Real numbers (float, for “floating point”): 2.718, 3.1415
 – Arithmetic is approximate, e.g., 6.022 × 10**23
 – Some funny representations: 6.022e+23

• Strings (str): "I love Python", ""

• Truth values (bool, for “Boolean”): True, False
Operations behave differently on different types

3.0 + 4.0
3 + 4
3 + 4.0
"3" + "4"
3 + "4" # Error
3 + True # Insanity! (Don’t do this.)

Moral: Python *sometimes* tells you when you do something that does not make sense.
Operations behave differently on different types

15.0 / 4.0
15 / 4
15.0 / 4
15 / 4.0

Truncating!

Type conversion:

float(15)
int(15.0)
int(15.5)
int("15")
str(15.5)
float(15) / 4

See in python tutor or here
4. A program is a recipe

Colvin Run Mill Corn Bread

- 1 cup cornmeal
- 1 cup flour
- ½ teaspoon salt
- 4 teaspoons baking powder
- 3 tablespoons sugar
- 1 egg
- 1 cup milk
- ¼ cup shortening (soft) or vegetable oil

Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8x8 or 9x9 baking pan. Bake at 425 degrees for 20-25 minutes.
What is a program?

• A program is a sequence of instructions
• The computer executes one after the other, as if they had been typed to the interpreter
• Saving your work as a program is better than re-typing from scratch

```
x = 1
y = 2
x + y
print x + y
print "The sum of", x, "and", y, "is", x+y
```
Interlude: The print statement

• The **print** statement always prints one line
 – The next print statement prints below that one
• Write 0 or more expressions after **print**, separated by commas
 – In the output, the values are separated by spaces
• Examples:

 print 3.1415
 print 2.718, 1.618
 print
 print 20 + 2, 7 * 3, 4 * 5
 print "The sum of", x, "and", y, "is", x+y

See in python tutor
Exercise: Convert temperatures

• Make a temperature conversion chart: Fahrenheit to Centigrade, for -40, 0, 32, 68, 98.6, 212, 293, 451

Output:

-40 -40.0
0 -17.7778
32 0.0
68 20.0
98.6 37.0
212 100.0
293 145.0
451 232.778

• You have created a Python program!
• (It doesn’t have to be this tedious, and it won’t be.)
Expressions, statements, and programs

• An expression evaluates to a value
 3 + 4
 \(\pi \times r^{*2} \)

• A statement causes an effect
 \(\pi = 3.14159 \)
 \texttt{print } \pi

• Expressions appear within other expressions and within statements
 \((\text{fahr} - 32) \times (5.0 / 9)\)
 \texttt{print } \pi \times r^{*2}

• A statement may \textit{not} appear within an expression
 3 + \texttt{print } \pi \quad \# \text{ Error!}

• A program is made up of statements
 – A program should do something or communicate information
 – Just evaluating an expression does not accomplish either goal
1. Python is a calculator

2. A variable is a container

3. Different types cannot be compared

4. A program is a recipe