
1

Name: ____Sample Solution __________________________

Email address: _____________________________________

Quiz Section: __________

CSE 140 Winter 2014: Quiz

(closed book, closed notes, no calculators)

Instructions: This exam is closed book, closed notes. It contains 3 questions and 4 pages (including this

one), totaling 10 points. Before you start, please check your copy to make sure it is complete. Turn in all

pages, together, when you are finished. Please write neatly; we cannot give credit for what we cannot

read.

Good Luck!

Total: 10 points.

Page Max Points Score

2 3

3 3

4 4

Total 10

2

1) [3 pts] You are given a dictionary of dictionaries (as shown below), that maps pollsters to

stateEdges (remember that a stateEdge is a dictionary that maps states to edges). Write

a function wa_edges that returns a list of tuples where each tuple holds the name of the

pollster as the first element and the edge corresponding to WA (Washington) as the second

element. If that pollster does not have an edge for WA, store its value as None.

input_data = { "Gallup": { "WA": 7, "CA": 15, "UT": -30 },

 "SurveyUSA": { "CA": 14, "CO": 2, "CT": 13, "FL": 0 },

 "Omniscient": { "AK": -14.0, "WA": -2.3, "CA": 20.9 } }

For example, calling wa_edges(input_data) returns a list containing these tuples (the

order of the tuples may differ):

[("Gallup", 7), ("SurveyUSA", None), ("Omniscient", -2.3)]

def wa_edges(data):

 ''' Given a dictionary that maps pollsters to stateEdges,

 return a list of tuples containing the pollster 's name and

 its corresponding edge for 'WA '. If there is no edge

 specified for WA, use None as the edge value.'''

 # Your code starts here

 wa_results = []

 for pollster in data: # or data.keys()

 if 'WA' in data[pollster]: # or data[pollster].keys()

 edge = data[pollster]['WA']

 else:

 edge = None

 tup = (pollster, edge)

 wa_results.append(tup)

 return wa_results

3

2) [3 pts]: Given a dictionary of dictionaries (as used in the previous problem), write a function

pollster_states that returns a dictionary that maps pollsters to a list of the states

shown in their associated stateEdge.

For example, calling pollster_states(input_data) returns a new dictionary containing

these values (the order of the values may differ):

{ "Gallup": ["WA", "CA", "UT"],

 "SurveyUSA": ["CA", "CO", "CT", "FL"],

 "Omniscient": ["AK", "WA", "CA"] }

def pollster_states(data):

 ''' Given a dictionary that maps pollsters to stateEdges,

 return a dictionary that maps each pollster to a list of the

 states shown in that Pollster's corresponding stateEdge.'''

 # Your code starts here

 new_dict = {}

 for poll in data: # or data.keys()

 state_lst = []

 for state in data[poll]: # or data[poll].keys()

 state_lst.append(state)

 new_dict[poll] = state_lst

 return new_dict

 #

 # An alternative

 #

 new_dict = {}

 for poll in data:

 new_dict[poll] = data[poll].keys()

 return new_dict

4

3) [4 pts] a) Draw the entire environment, including all active environment frames and all user-

defined variables, at the moment that the MINUS OPERATION IS performed. Feel free to draw

out the entire environment, but be sure to CLEARLY indicate what will exist at the moment the

Minus operation is performed (e.g. by crossing out things that will not exist).

b) How many different stack frames (environment frames) are active when the call stack is

DEEPEST/LARGEST? (Hint: The global frame counts as one frame.)

MY ANSWER: 4

c) What is printed?

MY ANSWER: 14

__

def bar(x):

 return x + 5

def foo(x):

 result = bar(x)

 result = bar(result)

 return result

def zippy(y):

 return bar(foo(y) - 3)

print zippy(2)

We have called zippy, and returned

from the call to foo(2) – returning

the value 12, but have not yet called

bar(9), as we will do after the

subtraction has been performed.

