
1

Name: _______Sample Solution_________________

Email address (UW NetID): _____________________________________

CSE 160 Spring 2018: Midterm Exam

(closed book, closed notes, no calculators)

Instructions: This exam is closed book, closed notes. You have 50 minutes to complete it. It contains 10

questions and 9 pages (including this one), totaling 90 points. Before you start, please check your copy to

make sure it is complete. Turn in all 9 pages of the exam, together, when you are finished. When time has

been called you must put down your pencil and stop writing. A syntax sheet will be provided separately.

Points will be deducted from your score if you are writing after time has been called. You should only

use parts of Python that have been covered in the class so far.

Good Luck! Total: 90 points. Time: 50 minutes.

Problem Points Possible

1 6

2 4

3 6

4 6

5 12

6 8

7 8

8 12

9 14

10 14

Total 90

2

1) [6 pts] For each of the if statements below, write the output when x = 20, x = 40, and x = 100

in the table below. If there is no output then write “NO OUTPUT”.

a)

if x < 30:

 print "line 1"

if x <= 40:

 print "line 2"

elif x < 100:

 print "line 3"

b)

if x > 20:

 print "line 1"

else:

 if x < 50:

 print "line 2"

 print "line 3"

x = 20 x = 40 x = 100

Code a)

line 1

line 2

line 2

NO OUTPUT

Code b)

line 2

line 3

line 1

line 1

2) [4 pts] Write the output of the code below in the box here:

sum = 0

for x in range(6, 0, -2):

 for y in range(x):

 sum = sum + y

print 'sum:', sum

MY ANSWER:

 sum: 22

3

3) [6 pts] What output is produced after running the following piece of code?

A = [1, 3, 7]

B = A

C = A[:]

A.append(C[-1])

B[2] = 5

C[1:2] = [9, 10, 11]

print A

print B

print C

MY ANSWER:

[1, 3, 5, 7]

[1, 3, 5, 7]

[1, 9, 10, 11, 7]

4) [6 pts] What output is produced after running the following piece of code?

from operator import itemgetter

data = [("soda", 4, 8), ("tea", 3, 2), ("juice", 5, 7),

 ("water", 5, 0), ("coffee", 7, 2)]

def some_key(x):

 return x[1] + x[2]

print sorted(data, key=some_key)

print sorted(data, key=itemgetter(2, 0))

MY ANSWER:

[('tea', 3, 2), ('water', 5, 0), ('coffee', 7, 2), ('soda', 4, 8), ('juice', 5, 7)]

[('water', 5, 0), ('coffee', 7, 2), ('tea', 3, 2), ('juice', 5, 7), ('soda', 4, 8)]

4

5) [12 pts] For each of the following statements, show what is printed. If nothing is printed then

write “NO OUTPUT”.

x = -200

def fig(x):

 if x < 100:

 return "small"

 else:

 return "large"

def pear(x):

 print "pear:", x

 return x + 7

def apple(y):

 y = pear(y)

 print "apple:", y

a) print pear(10)

pear: 10

17

b) print apple(2)

pear: 2

apple: 9

None

c) print fig(120)

large

d) print fig(pear(2))

pear: 2

small

5

6) [8 pts] Given the following dictionary, write what each expression evaluates to. If an error is

thrown, write “Error”.

my_dict = {5:"red", 2:"orange", 0:"green", 1:"purple"}

a) my_dict[2]

"orange"

b) my_dict[3]

KeyError: 3

c) my_dict[1][1]

"u"

d) my_dict["red"]

KeyError: 'red'

7) [8 pts] What is the output of the following code? If the code has an error write “Error”.

a = {1, 4, 5, 6, 9}

b = {4, 6, 8, 9}

a) print b & a

set([9, 4, 6])

b) print a | b

set([1, 4, 5, 6, 8, 9])

c) print b - a

set([8])

d) print a.remove(8)

KeyError: 8

Note: This notation was also fine:

{ 9, 4, 6 } and since sets

are not ordered, any ordering of

elements within the set was fine.

It was also o.k. to just say ‘Error’

for this question.

Note: This notation was also fine:

{ 9, 4, 6 } and since sets

are not ordered, any ordering of

elements within the set was fine.

It was also o.k. to just say ‘Error’

for this question for part d).

It was o.k. to just say ‘Error’ for

this question for part b) and d).

6

8) [12 pts] a) Draw the entire environment, including all active environment frames and all user-

defined values, at the moment that the MINUS OPERATION IS performed. Feel free to draw out

the entire environment, but be sure to CLEARLY indicate what will exist at the moment the

MINUS operation is performed (e.g. cross out frames that no longer exist).

b) When finished executing, what is printed out by this code?

c) How many different stack frames (environment frames) are active when the call stack is

DEEPEST/LARGEST? (Hint: The global frame counts as one frame.)

__

x = 100

y = 200

def zebra(y):

 return y + 2

def lion(x):

 temp = zebra(zebra(x)) + 8

 return zebra(x) - temp

def rhino(y):

 temp = zebra(y) + 3

 return lion(y) + temp

print rhino(x)

MY ANSWER:

MY ANSWER: 4

MY ANSWER: 95

7

9) [14 pts] Write a function get_youngest_person that takes a list of dictionaries as

arguments and returns the name of the youngest person in the list. The list of dictionaries will

have the following format:

people= [

{"name": "Alice", "age": 20},

{"name": "Bob", "age": 9},

{"name": "Dan", "age": 56}

]

For example, get_youngest_person(people) should return “Bob”. If there is more than

one person with the smallest age, return the name of the person who occurs first in the list. You

may assume the list contains at least one person and that no one is less than 1 year old.

def get_youngest_person(people):

 # Write your code here

Two possible solutions:

def get_youngest_person(people):

 yp_index = 0

 yp_age = people[0]["age"]

 for i in range(len(people)):

 if people[i]["age"] < yp_age:

 yp_age = people[i]["age"]

 yp_index = i

 return people[yp_index]["name"]

def get_youngest_person(people):

 name_dict = people[0]

 yp_name = name_dict["name"]

 yp_age = name_dict["age"]

 for name_dict in people:

 if name_dict["age"] < yp_age:

 yp_age = name_dict["age"]

 yp_name = name_dict["name"]

 return yp_name

8

10) [14 points] Write a function called transpose that takes a pixel_grid as described in

Homework 3 as an argument and returns the transpose of that pixel_grid. This is identical

to how we would transpose a matrix: swap the rows and columns. For example, if we had:

grid1 = [[1, 2, 3],

 [4, 5, 6]] # a grid with 2 rows and 3 columns

grid2 = [[1, 2, 3, 4]] # a grid with 1 row and 4 columns

grid3 = [[1]] # a grid with 1 row and 1 column

The call: transpose(grid1) would return: [[1, 4],

 [2, 5],

 [3, 6]]

The call: transpose(grid2) would return: [[1],

 [2],

 [3],

 [4]]

The call: transpose(grid3) would return: [[1]]

You may assume that the provided pixel_grid contains at least one row and one column.

Write your code on the next page:

A grid with 3 rows

and 2 columns

A grid with 4 rows

and 1 column

A grid with 1 row

and 1 column

9

10) (continued)

def transpose(pixel_grid):

 # Write your code here

Two common solutions:

append and append

def transpose(pixel_grid):

 transposed_grid = []

 num_orig_row = len(pixel_grid)

 num_orig_col = len(pixel_grid[0])

 for i in range(num_orig_col):

 transposed_row = []

 for j in range(num_orig_row):

 transposed_row.append(pixel_grid[j][i])

 transposed_grid.append(transposed_row)

 return transposed_grid

create and fill

def transpose(pixel_grid):

 transposed_grid = []

 num_orig_row = len(pixel_grid)

 num_orig_col = len(pixel_grid[0])

 for i in range(num_orig_col):

 transposed_grid.append([])

 for j in range(num_orig_row):

 transposed_grid[i].append(0)

 for i in range(num_orig_row):

 for j in range(num_orig_col):

 transposed_grid[j][i] = pixel_grid[i][j]

 return transposed_grid

