List comprehensions
(and other shortcuts)

UW CSE 160
Winter 2017

Three Ways to Define a List

* Explicitly write out the whole thing:
squares = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

* Write a loop to create it:

squares = []

for i in range(1l1l):
squares.append(i * 1)

 Write a list comprehension:
squares = [1 * i for i in range(1l1l)]

* Alist comprehension is a concise description of a list
* Alist comprehension is shorthand for a loop

Two ways to convert Centigrade to
Fahrenheit

ctemps = [17.1, 22.3, 18.4, 19.1]

With a loop:
ftemps = []

for ¢ in ctemps:
f = celsius_to farenheit(c)
ftemps. append (f)

With a list comprehension:

ftemps = [celsius_to farenheit(c) for c in ctemps]

The comprehension is usually shorter, more readable, and more efficient

Syntax of a comprehension

[(x, y) for x in seql for y in seq2 if sim(x, y) > threshold]

|] |\] \ J
Y Y ' Y g Y

expression for clause (required) zero or more zero or more if clauses
assigns value to the additional
variable x for clauses
—
something
that can be

iterated

Semantics of a comprehension

[(x, y) for x in seql for y in seq2 if sim(x, y) > threshold]

result = []
for x in seql:
for y in seqg2:
if sim(x, y) > threshold:
result.append((x, y))
.. use result ..

Types of comprehensions

List
[1 * 2 for i in range(3)]

Set

{ 1 * 2 for i in range(3)}
Dictionary

{ key: value for item in sequence ...}
{ 1: 1 * 2 for i in range(3)}

Cubes of the first 10 natural
numbers

Goal:
Produce: [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

With a loop:

cubes = []
for x in range(10):
cubes.append (x ** 3)

With a list comprehension:

cubes = [x ** 3 for x in range(10)]

Powers of 2, 2° through 21°
Goal: [1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

[2 ** 1 for i in range(1ll)]

Even elements of a list

Goal: Given an input list nums, produce a list of
the even numbers in nums

nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]
= [4, 2, 6]

o

[x for x in nums if x $ 2 == 0]

Dice Rolls

Goal: A list of all possible dice rolls.

With a loop:
rolls = []
for rl in range(l, 7):
for r2 in range(l, 7):
rolls.append((rl, r2))

With a list comprehension:
rolls = [(rl, r2) for rl in range(l, 7)
for r2 in range(l, 7)]

All above-average 2-die rolls

Goal: Result list should be a list of 2-tuples:
[(2,6),(3,5),(3,6),(4,4), (4,5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6),
(6,2), (6, 3), (6, 4), (6, 5), (6, 6)]

[(rl, r2) for rl in [1, 2, 3, 4, 5, 6]
for r2 in [1, 2, 3, 4, 5, 6]
if rl + r2 > 7]

OR

[(rl, r2) for rl in range(l, 7)
for r2 in range(8-rl, 7)]

Sum of above-average 2-die rolls

Goal: Result list should be a list of integers:

[rl + r2 for rl in [1, 2, 3, 4, 5, 6]
for r2 in [1, 2, 3, 4, 5, 6]
if rl + r2 > 7]

—~ [8, 8, 9, 8, 9, 10, 8, 9, 10, 11, 8, 9,
10, 11, 12]

Remove Duplicates: Use Set Comprehensions

{ r1 + r2 for rl in range(l, 7)
for r2 in range(l, 7)
if rl + r2 > 7}

— set([8, 9, 10, 11, 12])

Making a Grid

Goal: A grid were each element is the sum of it's row # and column #.
(eg. [[O, 1, 2], [1, 2, 3]])

With a loop:

grid = []

for i in range(2):
row = []

for j in range(3):
row.append (i + j)
grid. append (row)

With a list comprehension:

grid = [[1 + J for j in range(3)] for i in range(2)]

A word of caution

List comprehensions are great, but they can get confusing.
Err on the side of readability.

nums = [n for n in range(100) if
sum([int(j) for j in str(n)]) % 7 == 0]
nums = []

for n in range (100):
digit sum = sum([int(j) for J in str(n)])
if digit sum % 7 ==
nums . append (n)

A word of caution

List comprehensions are great, but they can get confusing.
Err on the side of readability.

nums = [n for n in range(100) if
sum([int(j) for j in str(n)]) % 7 == 0]
def sum digits(n):
digit list = [int (1) for 1 str(n)]
return sum(digit list)
nums = [n for n in range(100) 1f

O

sum digits(n) % 7 == 0]

More shortcuts!

Enumerate a list

the list = [10 ** 1 for 1 1n range(1l0)]
for 1 in range(len(the list)):
print str(i1i) + ': ' + str(the list[1])

1 |
index '
value

Or:

for index, value 1n enumerate (the list):
print str(index) + ': ' + str(value)

Enumerate a list

Goal: add each element’s index itself

the list = range(10)

new list = []

for i, v in enumerate(the list):
new list.append(i + v)

With a list comprehension:

the_list
new_list

range (10)
[i + v for i, v in enumerate(the 1list)]

Ternary Assignment

A common pattern in python

if x > threshold:
flag = "Over"
else:
flag = "Under"

Or

flag = "Under"
if x > threshold:
flag = "Over"

Ternary Assignment

A common pattern in python

if x > threshold:
flag = "Over"
else:

flag = "Under"

flag = "Over" if x > threshold else "Under"

Ternary Assignment

flag = "Over" if x > threshold else "Under"

— Y —
Result if true

Condition Result if false

Only works for single expressions as results.
Only works for if and else (no elif)

Ternary Assignment

Goal: A list of 'odd' or 'even' if that index is odd or even.

the list = []
for 1 1n range(16):
1f 1 % 2 ==
the list.append('even')
else:
the list.append('odd')
or
the list = []

for 1 1n range(16):
the list.append('even' 1f 1 $ 2 == 0 else 'odd')

Ternary Assignment

Goal: A list of 'odd' or 'even' if that index is odd or even.

the list = []
for 1 1n range(16):
if 1 % ==
the list.append('even')
else:

the list.append('odd')

or

the list = ['even' if i % 2 == 0 else 'odd' for i in range(16)]

Get more practice

List Comprehensions:

[(x, y) for x in seql for y in seq2 if
sim(x, y) > threshold]

Enumerate:

for index, wvalue in enumerate (seq):

Ternary If Statement:

flag = "Over" 1f x > threshold else "Under"

