
More On Classes

UW CSE 160

Winter 2017

1

Classes are a template for objects

•What are objects we've seen?

2

Classes are templates for objects

Examples of objects we've seen:
• Dict
• List
• Set
• Graph

3

• File

• Others?

Objects can be created with
constructors

set_one = set()

dict_one = dict() # dict_one = {}

str_one = str() # str_one = ""

list_one = list() # list_one = []

import networkx as nx

graph_one = nx.Graph()

4

Objects have methods
set_one.add('purple')

dict_one.setdefault('four', 16)

str_one.capitalize()

list_one.extend([1, 2, 3, 4])

graph_one.add_edge(1, 2)

5

Objects have internal state

6

str_one = 'purple'

str_two = 'spectrographically'

>> str_one.count('c')

0

>> str_two.count('c')

2

>> graph_one.nodes()

[1, 2]

Classes are templates for objects

•A class is a blueprint for an object.

7

class Vehicle:

Style Note: Classes use

CamelCase. No spaces or

underscore but the first letter of

each word is capitalized. Usually

keep class names to a single word

if possible.

Classes are templates for objects

8

class Vehicle:

 def __init__(self, make, color, passengers,

 wheels=4, tank=20):

 ''' Create a new Vehicle Object '''

 self.model, self.color = make, color

 self.seats = passengers

 self.wheels, self.tank = wheels, tank

 self.gas = 0

if __name__ == '__main__':

 my_car = Vehicle('Honda', 'White', 4)

 your_motorcycle = Vehicle('Mazda', 'Red', 2, 2)

 semi = Vehicle('Mercedes', 'Black', 2, wheels=16)

__init__ is the constructor. This is a “magic” method. Means something

special to python. In this case it defines how to create a new Vehicle object.

Classes are templates for objects

9

class Vehicle:

 def __init__(self, make, color, passengers,

 wheels=4, tank=20):

 ''' Create a new Vehicle Object '''

 self.model, self.color = make, color

 self.seats = passengers

 self.wheels, self.tank = wheels, tank

 self.gas = 0

 def fill_tank(self,gallons):

 '''Add gallons to tank. Until it is full'''

 self.gas += gallons

 if self.gas > self.tank :

 self.gas = self.tank

Classes are templates for objects

10

class Vehicle:

 def __init__(self, make, color, passengers,

 wheels=4, tank=20):

 ''' Create a new Vehicle Object '''

 self.model, self.color = make, color

 self.seats = passengers

 self.wheels, self.tank = wheels, tank

 self.gas = 0

 def __str__(self):

 return 'Gas remaining: ' + str(self.gas)

__str__ is a “magic” method to convert object to a string.

Let's Play With Vehicles

import vehicle

11

Why Use Classes?

 Classes are blueprints for objects, objects
model the real world. This makes
programming easier.

 Have multiple objects with similar functions
(methods) but different internal state.

 Provide a software abstraction for clients to
use without needing to know the details of
how the object is implemented.

12

A Card Game

Create the base classes that could be used by a
client to create multiple card games.

• Blackjack

• Spades
• Poker
• Cribbage

• Euchre (24 cards!)

13

A Card Game: Design

What are some high level classes that might be
useful?

14

A Card Game: Design

What are some high level classes that might be
useful?

Deck

Holds a set of cards, can be shuffled and deal cards into
Hands.

Hand

Holds cards and has basic methods for calculating
properties. (has pair, sum etc)

Card

Takes a face value character, points value, and suit.

15

A Card Game: Design
•Useful functions for Card class

16

class Card:

A Card Game: Design

17

class Card:

 def __init__(self, face, suit, value=1):

 '''Create a new card'''

 self.face, self.suit = face.upper()[0], suit.upper()[0]

 self.value = value

 def is_black(self):

 return self.suit == 'S' or self.suit == 'C'

 def is_face(self):

 return not self.face.isdigit()

A Card Game: Design
•More magic methods, comparing cards

18

(Also in class Card:)

 …
 def __eq__(self,other):

 return self.value == other.value

 def __lt__(self,other):

 return self.value < other.value

 def __gt__(self,other):

 return self.value > other.value

See Also: __ne__, __le__, __ge__

A Card Game: Design
•Useful functions for the Hand class

19

class Hand:

A Card Game: Design
•Useful functions for the Hand class

20

class Hand:

 def __init__(self,cards):

 self.card = cards

 def value(self):

 return sum([c.value for c in self.cards])

 def has_pair(self):

 '''Returns True if hand has a pair'''

 for i, c in enumerate(self.cards):

 for c2 in self.cards[i + 1:]:

 if c.face == c2.face:

 return True

 return False

A Card Game: Design
•Useful functions for the Deck class

21

class Deck:

A Card Game: Design
•Useful functions for the Deck class

22

class Deck:

 def __init__(self,cards):

 self.cards = cards

 def shuffle(self):

 '''Randomize the order of internal cards list'''

 random.shuffle(self.cards)

 def deal(self,n=1):

 hand_cards = self.cards[0:n]

 del self.cards[0:n]

 return Hand(hand_cards)

A Card Game: Design
•Useful functions for the Deck class

23

(also in class Deck:)

 …
 def __len__(self):

 return len(self.cards)

