
More On Classes

UW CSE 160

Winter 2017

1

Classes are a template for objects

•What are objects we've seen?

2

Classes are templates for objects

Examples of objects we've seen:
• Dict
• List
• Set
• Graph

3

• File

• Others?

Objects can be created with
constructors

set_one = set()

dict_one = dict() # dict_one = {}

str_one = str() # str_one = ""

list_one = list() # list_one = []

import networkx as nx

graph_one = nx.Graph()

4

Objects have methods
set_one.add('purple')

dict_one.setdefault('four', 16)

str_one.capitalize()

list_one.extend([1, 2, 3, 4])

graph_one.add_edge(1, 2)

5

Objects have internal state

6

str_one = 'purple'

str_two = 'spectrographically'

>> str_one.count('c')

0

>> str_two.count('c')

2

>> graph_one.nodes()

[1, 2]

Classes are templates for objects

•A class is a blueprint for an object.

7

class Vehicle:

Style Note: Classes use

CamelCase. No spaces or

underscore but the first letter of

each word is capitalized. Usually

keep class names to a single word

if possible.

Classes are templates for objects

8

class Vehicle:

 def __init__(self, make, color, passengers,

 wheels=4, tank=20):

 ''' Create a new Vehicle Object '''

 self.model, self.color = make, color

 self.seats = passengers

 self.wheels, self.tank = wheels, tank

 self.gas = 0

if __name__ == '__main__':

 my_car = Vehicle('Honda', 'White', 4)

 your_motorcycle = Vehicle('Mazda', 'Red', 2, 2)

 semi = Vehicle('Mercedes', 'Black', 2, wheels=16)

__init__ is the constructor. This is a “magic” method. Means something

special to python. In this case it defines how to create a new Vehicle object.

Classes are templates for objects

9

class Vehicle:

 def __init__(self, make, color, passengers,

 wheels=4, tank=20):

 ''' Create a new Vehicle Object '''

 self.model, self.color = make, color

 self.seats = passengers

 self.wheels, self.tank = wheels, tank

 self.gas = 0

 def fill_tank(self,gallons):

 '''Add gallons to tank. Until it is full'''

 self.gas += gallons

 if self.gas > self.tank :

 self.gas = self.tank

Classes are templates for objects

10

class Vehicle:

 def __init__(self, make, color, passengers,

 wheels=4, tank=20):

 ''' Create a new Vehicle Object '''

 self.model, self.color = make, color

 self.seats = passengers

 self.wheels, self.tank = wheels, tank

 self.gas = 0

 def __str__(self):

 return 'Gas remaining: ' + str(self.gas)

__str__ is a “magic” method to convert object to a string.

Let's Play With Vehicles

import vehicle

11

Why Use Classes?

 Classes are blueprints for objects, objects
model the real world. This makes
programming easier.

 Have multiple objects with similar functions
(methods) but different internal state.

 Provide a software abstraction for clients to
use without needing to know the details of
how the object is implemented.

12

A Card Game

Create the base classes that could be used by a
client to create multiple card games.

• Blackjack

• Spades
• Poker
• Cribbage

• Euchre (24 cards!)

13

A Card Game: Design

What are some high level classes that might be
useful?

14

A Card Game: Design

What are some high level classes that might be
useful?

Deck

Holds a set of cards, can be shuffled and deal cards into
Hands.

Hand

Holds cards and has basic methods for calculating
properties. (has pair, sum etc)

Card

Takes a face value character, points value, and suit.

15

A Card Game: Design
•Useful functions for Card class

16

class Card:

A Card Game: Design

17

class Card:

 def __init__(self, face, suit, value=1):

 '''Create a new card'''

 self.face, self.suit = face.upper()[0], suit.upper()[0]

 self.value = value

 def is_black(self):

 return self.suit == 'S' or self.suit == 'C'

 def is_face(self):

 return not self.face.isdigit()

A Card Game: Design
•More magic methods, comparing cards

18

(Also in class Card:)

 …
 def __eq__(self,other):

 return self.value == other.value

 def __lt__(self,other):

 return self.value < other.value

 def __gt__(self,other):

 return self.value > other.value

See Also: __ne__, __le__, __ge__

A Card Game: Design
•Useful functions for the Hand class

19

class Hand:

A Card Game: Design
•Useful functions for the Hand class

20

class Hand:

 def __init__(self,cards):

 self.card = cards

 def value(self):

 return sum([c.value for c in self.cards])

 def has_pair(self):

 '''Returns True if hand has a pair'''

 for i, c in enumerate(self.cards):

 for c2 in self.cards[i + 1:]:

 if c.face == c2.face:

 return True

 return False

A Card Game: Design
•Useful functions for the Deck class

21

class Deck:

A Card Game: Design
•Useful functions for the Deck class

22

class Deck:

 def __init__(self,cards):

 self.cards = cards

 def shuffle(self):

 '''Randomize the order of internal cards list'''

 random.shuffle(self.cards)

 def deal(self,n=1):

 hand_cards = self.cards[0:n]

 del self.cards[0:n]

 return Hand(hand_cards)

A Card Game: Design
•Useful functions for the Deck class

23

(also in class Deck:)

 …
 def __len__(self):

 return len(self.cards)

