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Classes are a template for objects 

•What are objects we've seen? 
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Classes are templates for objects 

Examples of objects we've seen: 
• Dict 
• List 
• Set 
• Graph 
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• File 

• Others? 



Objects can be created with 
constructors 

set_one = set()  

dict_one = dict()  # dict_one = {} 

str_one = str()    # str_one = "" 

list_one = list()  # list_one = [] 

 

import networkx as nx 

graph_one = nx.Graph() 
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Objects have methods 
set_one.add('purple') 

 

dict_one.setdefault('four', 16) 

 

str_one.capitalize() 

 

list_one.extend([1, 2, 3, 4]) 

 

graph_one.add_edge(1, 2) 
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Objects have internal state 
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str_one = 'purple' 

str_two = 'spectrographically' 

 

>> str_one.count('c') 

0 

>> str_two.count('c') 

2  

>> graph_one.nodes() 

[1, 2] 



Classes are templates for objects 

•A class is a blueprint for an object. 
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class Vehicle:  

Style Note: Classes use 

CamelCase. No spaces or 

underscore but the first letter of 

each word is capitalized.  Usually 

keep class names to a single word 

if possible.  



Classes are templates for objects 
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class Vehicle:  

 

    def __init__(self, make, color, passengers,  

    wheels=4, tank=20): 

        ''' Create a new Vehicle Object ''' 

        self.model, self.color = make, color  

        self.seats = passengers 

        self.wheels, self.tank = wheels, tank 

        self.gas = 0 

 

if __name__ == '__main__': 

    my_car = Vehicle('Honda', 'White', 4) 

    your_motorcycle = Vehicle('Mazda', 'Red', 2, 2) 

    semi = Vehicle('Mercedes', 'Black', 2, wheels=16) 

 
__init__ is the constructor. This is a  “magic” method.  Means something 

special to python. In this case it defines how to create a new Vehicle object. 



Classes are templates for objects 
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class Vehicle:  

 

    def __init__(self, make, color, passengers,  

   wheels=4, tank=20): 

        ''' Create a new Vehicle Object ''' 

        self.model, self.color = make, color  

        self.seats = passengers 

        self.wheels, self.tank = wheels, tank 

        self.gas = 0 

 

    def fill_tank(self,gallons): 

        '''Add gallons to tank. Until it is full''' 

        self.gas += gallons 

        if self.gas > self.tank : 

            self.gas = self.tank  

 



Classes are templates for objects 
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class Vehicle:  

 

    def __init__(self, make, color, passengers,  

   wheels=4, tank=20): 

        ''' Create a new Vehicle Object ''' 

        self.model, self.color = make, color  

        self.seats = passengers 

        self.wheels, self.tank = wheels, tank 

        self.gas = 0 

 

    def __str__(self): 

        return 'Gas remaining: ' + str(self.gas) 

 

     

__str__ is a “magic” method to convert object to a string. 



Let's Play With Vehicles  

import vehicle 
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Why Use Classes? 

 Classes are blueprints for objects, objects 
model the real world. This makes 
programming easier. 

 Have multiple objects with similar functions 
(methods) but different internal state. 

 Provide a software abstraction for clients to 
use without needing to know the details of 
how the object is implemented. 
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A Card Game 

Create the base classes that could be used by a 
client to create multiple card games. 

• Blackjack 

• Spades 
• Poker 
• Cribbage 

• Euchre (24 cards!)  
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A Card Game: Design 

What are some high level classes that might be 
useful?   
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A Card Game: Design 

What are some high level classes that might be 
useful? 

Deck 

Holds a set of cards, can be shuffled and deal cards into 
Hands. 

Hand 

Holds cards and has basic methods for calculating 
properties. (has pair, sum etc) 

Card 

Takes a face value character, points value, and suit.   
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A Card Game: Design 
•Useful functions for Card class 
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class Card: 



A Card Game: Design 
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class Card: 
 

  def __init__(self, face, suit, value=1): 

    '''Create a new card''' 

    self.face, self.suit  = face.upper()[0], suit.upper()[0] 

    self.value = value  
 

  def is_black(self): 

    return self.suit == 'S' or self.suit == 'C' 
 

  def is_face(self): 

    return not self.face.isdigit() 

   



A Card Game: Design 
•More magic methods, comparing cards  
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(Also in class Card:) 

    … 
    def  __eq__(self,other): 

        return self.value == other.value 

  

    def __lt__(self,other): 

        return self.value < other.value 
 

    def __gt__(self,other): 

        return self.value > other.value 
 

See Also:  __ne__, __le__, __ge__ 

  
 

 

   



A Card Game: Design 
•Useful functions for the Hand class 
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class Hand: 
 

  
 

 

   



A Card Game: Design 
•Useful functions for the Hand class 
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class Hand: 
 

    def __init__(self,cards): 

        self.card = cards 
 

    def value(self): 

        return sum([c.value for c in self.cards]) 
 

    def has_pair(self): 

        '''Returns True if hand has a pair''' 

        for i, c in enumerate(self.cards): 

            for c2 in self.cards[i + 1:]: 

                if c.face == c2.face: 

                    return True 

        return False 

 

  
 

 

   



A Card Game: Design 
•Useful functions for the Deck class 
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class Deck: 
 

  
 

 

   



A Card Game: Design 
•Useful functions for the Deck class 
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class Deck: 
 

  def __init__(self,cards): 

    self.cards = cards 
 

  def shuffle(self): 

    '''Randomize the order of internal cards list''' 

    random.shuffle(self.cards) 

  

  def deal(self,n=1): 

    hand_cards = self.cards[0:n] 

    del self.cards[0:n] 

    return Hand(hand_cards) 

 

  
 

 

   



A Card Game: Design 
•Useful functions for the Deck class 
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(also in class Deck:) 

    … 
    def __len__(self): 

        return len(self.cards) 
 

  
 

 

   


