More On Classes

UW CSE 160
Winter 2017



Classes are a template for objects

*What are objects we've seen?



Classes are templates for objects

Examples of objects we've seen:

Dict .

! . File

ISt . Others?
Set

Graph



Objects can be created with

constructors
set one = set()
dict one = dict() # dict one = {}
str one = str() # str one = ""

list one = list() # list one = []

import networkx as nx
graph one = nx.Graph()



Objects have methods
set one.add('purple')

dict one.setdefault('four', 16)
str one.capitalize()
list one.extend([1l, 2, 3, 4])

graph one.add edge(l, 2)



Objects have internal state

str one = 'purple'
str two = 'spectrographically'

>> str one.count('c')
0

>> str two.count('c')
2

>> graph one.nodes ()
[1, 2]



Classes are templates for objects

*A class is a blueprint for an object.

class Vehicle:




Classes are templates for objects

class Vehicle:

def init (self, make, color, passengers,
wheels=4, tank=20):
'''" Create a new Vehicle Object '''
self model, self.color = make, color
self.seats = passengers
self .wheels, self.tank = wheels, tank
self.gas = 0

if name == ' main ':
my car = Vehicle('Honda', 'White',6 4)
your motorcycle = Vehicle('Mazda', 'Red', 2, 2)
semi = Vehicle('Mercedes', 'Black', 2, wheels=16)

_ 8



Classes are templates for objects

class Vehicle:

def init (self, make, color, passengers,
wheels=4, tank=20):
'''" Create a new Vehicle Object '''
self.model, self.color = make, color
self.seats = passengers
self .wheels, self.tank = wheels, tank
self.gas = 0

def fill tank(self,gallons):
'''Add gallons to tank. Until it is full'''
self.gas += gallons
if self.gas > self.tank
self.gas = self.tank



Classes are templates for objects

class Vehicle:

def init (self, make, color, passengers,
wheels=4, tank=20):
'''" Create a new Vehicle Object '''
self.model, self.color = make, color
self.seats = passengers
self .wheels, self.tank = wheels, tank
self.gas = 0

def str (self):
return 'Gas remaining: ' + str(self.gas)

10



Let's Play With Vehicles

import vehicle



Why Use Classes?

Classes are blueprints for objects, objects
model the real world. This makes
programming easier.

Have multiple objects with similar functions
(methods) but different internal state.
Provide a software abstraction for clients to
use without needing to know the details of
how the object is implemented.



A Card Game

Create the base classes that could be used by a
client to create multiple card games.

Blackjack

Spades

Poker

Cribbage

Euchre (24 cards!)



A Card Game: Design

What are some high level classes that might be
useful?

14



A Card Game: Design

What are some high level classes that might be

useful?

Deck
Holds a set of cards, can be shuffled and deal cards into
Hands.

Hand
Holds cards and has basic methods for calculating
properties. (has pair, sum etc)

Card
Takes a face value character, points value, and suit.

15



A Card Game: Design

eUseful functions for Card class

class Card:

16



A Card Game: Design

class Card:

def init (self, face, suit, value=l):
''"'"Create a new card'''
self.face, self.suit = face.upper () [0], suit.upper () [0]
self.value = value

def is black(self):
return self.suit == 'S' or self.suit == 'C'

def is face(self):
return not self.face.isdigit()

17



A Card Game: Design

*More magic methods, comparing cards

(Also In class Card:)

def eq (self,other):
return self.value == other.value

def 1t (self,other):
return self.value < other.wvalue

def gt (self,other):
return self.value > other.wvalue

SeeAlso: ne , le , qge

18



A Card Game: Design

eUseful functions for the Hand class

class Hand:

19



A Card Game: Design

eUseful functions for the Hand class

class Hand:

def init (self,cards):
self.card = cards

def value (self) :
return sum([c.value for c¢ in self.cards])

def has pair(self):
''"Returns True if hand has a pair'''
for i, ¢ in enumerate(self.cards):
for c2 in self.cards[i + 1:]:
i1f c.face == c2.face:
return True

return False 20



A Card Game: Design

eUseful functions for the Deck class

class Deck:

21



A Card Game: Design

eUseful functions for the Deck class

class Deck:

def init (self,cards):

self.cards = cards

def shuffle(self):
'' "Randomize the order of internal cards list'''
random.shuffle(self.cards)

def deal (self,n=1):
hand cards = self.cards[0:n]
del self.cards[0:n]
return Hand(hand cards)

22



A Card Game: Design

eUseful functions for the Deck class

(also in class Deck:)

def len (self):

return len(self.cards)

23



