Sharing, mutability, and
immutability

Ruth Anderson
UW CSE 160
Winter 2017

listl
list2
list3
print
listl
list2
list3
print
listl
listl
print

listl,
.append ("eb5")
.append ("eb6")
.append ("e7")
listl,

list3
.append ("e8")
listl,

See in python tutor

Copying and mutation

["e1" ,

listl

"e2 " ,

list(listl)

"e3", "e4"]

make a copy; also “1istl[:]1”

list2, list3

list2, list3

list2, list3

http://tinyurl.com/hnpmqrb

Variable reassignment vs. Object mutation

e Reassigning a variable changes a binding, it does
not change (mutate) any object
Reassigning is always done via the syntax:

myvar = exXpr size

=6

list2 = listl

Changes what the
variables

size and 1ist2
are bound to

* Mutating (changing) an object does not change

any variable binding

Two syntaxes:
left expr = right expr

expr.method(args...)

Examples:

Changes something about
the object thatmylist
refers to

mylist[3]

= myvalue

mylist.append (myvalue)

3

Example: Variable reassighment
or Object mutation?

def no_change (1st) : See in python tutor

"""does NOT modify what 1lst refers to,
instead re-binds 1lst"""
lst = 1lst + [99]

def change val (lst):
"""modifies object 1lst refers to"""
1st[0] = 13

def append val (1st):
"""modifies object 1lst refers to"""
1st.append(99)

1st2 = [1, 2]

no_change (1st2)

change val (lst2)

append val (1lst2)

http://tinyurl.com/jrewyrv

New and old values

Every expression evaluates to a value
— |t might be a new value
— It might be a value that already exists

A constructor evaluates to a new value:

[3 ’ 1 ’ 4 ’ 1 ’ 5 ’ 9] : :
Here the right hand side
[3, 1, 4] + [1, 5, 9] of = is a constructor

mylist = [[3, 11, [4, 111—
An access expression evaluates to an existing value:
mylist[1]
What does a function call evaluate to?

An aside: List notation

* Possibly misleading notation:

“four” | “score” | “and” | “seven” | “years”

 More accurate, but more verbose, notation:

Vool J !

“four” “score” “and” “seven” “years”

See in python tutor

Aside: Object identity

* Anobject’s identity never changes
e Can think of it as its address in memory
* Its value of the object (the thing it represents) may change

mylist = [1, 2, 3]
otherlist = mylist
mylist.append(4)

mylist is otherlist = True
mylist and otherlist refer to the exact same object

mylist == [1, 2, 3, 4] = True
The object mylist referstois equal to the object [1,2,3,4]
(but they are two different objects)

mylist is [1, 2, 3, 4] = False
The object mylist refersto is not the exact same object
as the object [1,2,3,4]

Moral: Use == to check for equality, NOT is

http://tinyurl.com/h4tg74a

Object type and variable type

* An object’s type never changes

* Avariable can get rebound to a value of a
different type
Example: The variable a can be bound to an int or a list

5 5 is always an int
[1, 2, 3, 4] [1, 2, 3, 4] isalwaysa list

a

a

* Atype indicates:
— what operations are allowed
— the set of representable values
— type (object) returnsthe type of an object

New datatype: tuple

A tuple represents an ordered sequence of values
Example:

tuple

“four” | “score” | “and” | “seven” | “years”

Vool J !

“four” “score” “and” “seven” “years”

Tuple operations

Constructors

— Literals: Use parentheses

("four",

"score", "and", '"seven",

- (3/ 1) + (41 1) => (31 1)4) 1)

Queries

— Just like lists

Mutators

— None!

"years'")

10

Immutable datatype

 An immutable datatype is one that doesn’t have
any functions in the third category:

— Constructors
— Queries
— Mutators: None!
* Immutable datatypes:
— int, float, boolean, string, function, tuple, frozenset

 Mutable datatypes:
— list, dictionary, set

11

Remember: Not every value may be
placed in a set

Set elements must be immutable values
— int, float, bool, string, tuple
— not: list, set, dictionary

The set itself is mutable (e.g. we can add and remove
elements)

Goal: only set operations change the set
— after “myset.add (x)”, x in myset=> True
— y in myset always evaluates to the same value
Both conditions should hold until myset is changed

Mutable elements can violate these goals

Aside: frozenset must contain immutable values and is
itself immutable (cannot add and remove elements)

12

Remember: Not every value is
allowed to be a key in a dictionary

Keys must be immutable values
— int, float, bool, string, tuple of immutable types
— not: list, set, dictionary
The dictionary itself is mutable (e.g. we can add and
remove elements)
Goal: only dictionary operations change the keyset
— after “mydict([x] = y’, mydict[x] =V
— ifa == b,thenmydict[a] == mydict[b]
These conditions should hold until mydict is changed
Mutable keys can violate these goals

13

Python’s Data Model

* All data is represented by objects

* Each object has:

— an identity
* Never changes
* Think of this as address in memory
e Test with is (but you rarely need to do so)

— a type
* Never changes
— avalue
e Can change for mutable objects

* Cannot change for immutable objects
e Test with ==

14

Mutable and Immutable Types

 Immutable datatypes:

— int, float, boolean, string, function, tuple, frozenset

 Mutable datatypes:

— list, dictionary, set

Note: a set is mutable, but a frozenset is immutable

15

See in python tutor

Tuples are immutable
Lists are mutable

def updaterecord(record, position, wvalue):
"""Change the value at the given position"""

record[position] = value

mylist = [1,2,3]

mytuple = (1,2,3)
updaterecord (mylist, 1, 10)
print mylist

updaterecord (mytuple, 1, 10)
print mytuple

16

http://tinyurl.com/j34stgk

See in python tutor

Increment Example

def increment (uniquewords, word):
"""increment the count for word"""
if uniquewords.has key(word) :
uniquewords [word] = uniquewords[word] + 1

else:

I
=

uniquewords [word]
mywords = dict()
increment (mywords, "school")
print mywords
def increment (value) :
"""increment the wvalue???"""
value = value + 1
myval = 5
increment (myval)

print myval 17

http://tinyurl.com/h76dltq

Increment Example (cont.)

>>> def increment (uniquewords, word) :
"""jncrement the count for word"""
if uniquewords.has key(word) :
uniquewords [word] = uniquewords[word] + 1
else:
uniquewords|[word] =1

>>> mywords = dict ()

>>> increment (mywords, "school")
>>> print mywords

{'school': 1}

>>> def increment (value) :
"""increment the wvalue???"""

.. value = value + 1

>>> myval = 5

>>> increment (myval)

>>> print myval

5

