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Copying and mutation
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http://tinyurl.com/hnpmqrb

Variable reassignment vs. Object mutation

e Reassigning a variable changes a binding, it does
not change (mutate) any object
Reassigning is always done via the syntax:

myvar = exXpr size

=6

list2 = listl

Changes what the
variables

size and 1ist2
are bound to

* Mutating (changing) an object does not change

any variable binding

Two syntaxes:
left expr = right expr

expr.method(args...)

Examples:

Changes something about
the object thatmylist
refers to

mylist[3]

= myvalue

mylist.append (myvalue)
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Example: Variable reassighment
or Object mutation?

def no_change (1st) : See in python tutor

"""does NOT modify what 1lst refers to,
instead re-binds 1lst"""
lst = 1lst + [99]

def change val (lst):
"""modifies object 1lst refers to"""
1st[0] = 13

def append val (1st):
"""modifies object 1lst refers to"""
1st.append(99)

1st2 = [1, 2]

no_change (1st2)

change val (lst2)

append val (1lst2)


http://tinyurl.com/jrewyrv

New and old values

Every expression evaluates to a value
— |t might be a new value
— It might be a value that already exists

A constructor evaluates to a new value:

[3 ’ 1 ’ 4 ’ 1 ’ 5 ’ 9] : :
Here the right hand side
[3, 1, 4] + [1, 5, 9] of = is a constructor

mylist = [[3, 11, [4, 111—
An access expression evaluates to an existing value:
mylist[1]
What does a function call evaluate to?



An aside: List notation

* Possibly misleading notation:

“four” | “score” | “and” | “seven” | “years”

 More accurate, but more verbose, notation:

Vool J !

“four” “score” “and” “seven” “years”
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Aside: Object identity

* Anobject’s identity never changes
e Can think of it as its address in memory
* Its value of the object (the thing it represents) may change

mylist = [1, 2, 3]
otherlist = mylist
mylist.append(4)

mylist is otherlist = True
mylist and otherlist refer to the exact same object

mylist == [1, 2, 3, 4] = True
The object mylist referstois equal to the object [1,2,3,4]
(but they are two different objects)

mylist is [1, 2, 3, 4] = False
The object mylist refersto is not the exact same object
as the object [1,2,3,4]

Moral: Use == to check for equality, NOT is



http://tinyurl.com/h4tg74a

Object type and variable type

* An object’s type never changes

* Avariable can get rebound to a value of a
different type
Example: The variable a can be bound to an int or a list

5 5 is always an int
[1, 2, 3, 4] [1, 2, 3, 4] isalwaysa list

a

a

* Atype indicates:
— what operations are allowed
— the set of representable values
— type (object) returnsthe type of an object



New datatype: tuple

A tuple represents an ordered sequence of values
Example:

tuple

“four” | “score” | “and” | “seven” | “years”

Vool J !

“four” “score” “and” “seven” “years”




Tuple operations

Constructors

— Literals: Use parentheses

("four",

"score", "and", '"seven",

- (3/ 1) + (41 1) => (31 1)4) 1)

Queries

— Just like lists

Mutators

— None!

"years'")
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Immutable datatype

 An immutable datatype is one that doesn’t have
any functions in the third category:

— Constructors
— Queries
— Mutators: None!
* Immutable datatypes:
— int, float, boolean, string, function, tuple, frozenset

 Mutable datatypes:
— list, dictionary, set
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Remember: Not every value may be
placed in a set

Set elements must be immutable values
— int, float, bool, string, tuple
— not: list, set, dictionary

The set itself is mutable (e.g. we can add and remove
elements)

Goal: only set operations change the set
— after “myset.add (x)”, x in myset=> True
— y in myset always evaluates to the same value
Both conditions should hold until myset is changed

Mutable elements can violate these goals

Aside: frozenset must contain immutable values and is
itself immutable (cannot add and remove elements)
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Remember: Not every value is
allowed to be a key in a dictionary

Keys must be immutable values
— int, float, bool, string, tuple of immutable types
— not: list, set, dictionary
The dictionary itself is mutable (e.g. we can add and
remove elements)
Goal: only dictionary operations change the keyset
— after “mydict([x] = y’, mydict[x] =V
— ifa == b,thenmydict[a] == mydict[b]
These conditions should hold until mydict is changed
Mutable keys can violate these goals
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Python’s Data Model

* All data is represented by objects

* Each object has:

— an identity
* Never changes
* Think of this as address in memory
e Test with is (but you rarely need to do so)

— a type
* Never changes
— avalue
e Can change for mutable objects

* Cannot change for immutable objects
e Test with ==
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Mutable and Immutable Types

 Immutable datatypes:

— int, float, boolean, string, function, tuple, frozenset

 Mutable datatypes:

— list, dictionary, set

Note: a set is mutable, but a frozenset is immutable
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Tuples are immutable
Lists are mutable

def updaterecord(record, position, wvalue):
"""Change the value at the given position"""

record[position] = value

mylist = [1,2,3]

mytuple = (1,2,3)
updaterecord (mylist, 1, 10)
print mylist

updaterecord (mytuple, 1, 10)
print mytuple
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Increment Example

def increment (uniquewords, word):
"""increment the count for word"""
if uniquewords.has key(word) :
uniquewords [word] = uniquewords[word] + 1

else:

I
=

uniquewords [word]
mywords = dict()
increment (mywords, "school")
print mywords
def increment (value) :
"""increment the wvalue???"""
value = value + 1
myval = 5
increment (myval)

print myval 17


http://tinyurl.com/h76dltq

Increment Example (cont.)

>>> def increment (uniquewords, word) :
"""jncrement the count for word"""
if uniquewords.has key(word) :
uniquewords [word] = uniquewords[word] + 1
else:
uniquewords|[word] =1

>>> mywords = dict ()

>>> increment (mywords, "school")
>>> print mywords

{'school': 1}

>>> def increment (value) :
"""increment the wvalue???"""

.. value = value + 1

>>> myval = 5

>>> increment (myval)

>>> print myval

5



