Sets

Ruth Anderson
UW CSE 160
Winter 2017

Sets

Mathematical set: a collection of values, without
duplicates or order

Order does not matter

{1,2,3}=={3,2,1}

No duplicates

{3,1,4,1,5}=={5,4,3,1}

For every data structure, ask:

— How to create

— How to query (look up) and perform other operations
e (Canresultin a new set, or in some other datatype)

— How to modify
Answer: http://docs.python.org/2/library/stdtypes.html#set

http://docs.python.org/2/library/stdtypes.html#set
http://docs.python.org/2/library/stdtypes.html#set

Two ways to create a set

1. Direct mathematical syntax:
odd = { 1, 3, 5}
prime = { 2, 3, 5 }

Note: Cannot use “{}” to express empty set: it means
something else ®.

2. Construct from a th (also from a tuple or string)
odd = set([1, 3, 5])
prime = set([2, 3, 5])
empty = set([]) # or set()
Python always prints using this syntax above

Set operations

odd = { 1, 3, 5 }
= {

prime 2, 3, 5}

* membership e Python: in 4 in prime = False

* unionu Python: | odd | prime ={1,2,3,5}
* intersection N Python: & odd & prime ={3,5}

o difference \ or - Python: - odd - prime = {1}

Think in terms of set operations,
not in terms of iteration and element operations

— Shorter, clearer, less error-prone, faster

Although we can do iteration over sets:
iterates over items in arbitrary order
for item in myset:

But we cannot index into a set to access a specific element.

Modifying a set

 Add one element to a set:
myset.add (newelt)
myset = myset | { newelt }

* Remove one element from a set:
myset.remove (elt) #elt mustbeinmyset orraiseserr
myset.discard(elt) # nevererrs
myset = myset - { elt }
What would this do?
myset = myset - elt

e Remove and return an arbitrary element from a set:
myset.pop ()

Note: add, remove and discard all return None

N Q ' 8B 8 u & K N

Practice with sets

8}
1A foo" ,

1,

S}

See in python tutor

http://tinyurl.com/zbxu9jx

List vs. set operations (1)

Find the common elements in both and
outl =[]
foriin list2:
ifiinlistl:
outl .append(i)

Aside: We will learn about list comprehensions later
outl =[iforiinlist2 ifiin list1]

Find the common elements in both set1 and set2:
setl & set2

Much shorter, clearer, easier to write with sets!

List vs. set operations(2)

Find elements in either or (or both) (without duplicates):
out?2 = list(list1) # make a copy
foriin list2:

if i not in list1: # don’t append elements already in out2

out2.append(i)

Another way:
out2 = list1+list2
foriin outl: # outl = common elements in both lists

out2.remove(i) # Remove common elements

Find the elements in either setl or set2 (or both):
setl | set2

List vs. set operations(3)

Find the elements in either but not in both:
out3 =[]
foriin list1+list2:
if i notin listl or i notin list2:
out3.append(i)
Find the elements in either set but not in both:
setl / set2

Not every value may be placed in a set

Set elements must be immutable values
— int, float, bool, string, tuple
— not: list, set, dictionary

* The set itself is mutable (e.g. we can add and remove
elements)

 Goal: only set operations change the set
— after “myset.add (x)”, x in myset=> True
— y in myset always evaluates to the same value
Both conditions should hold until myset is changed
 Mutable elements can violate these goals

* Aside: frozenset must contain immutable values and is
itself immutable (cannot add and remove elements)

10

