Algorithmic complexity:
Speed of algorithms

CSE 160
Spring 2015
University of Washington

How fast does your program run?

Usually, this does not matter
Correctness trumps speed

Computer time is much cheaper than human time

The cost of your program depends on:

— Time to write and verify it
* High cost: salaries

— Time to run it
* Low cost: electricity

An inefficient program may give results faster

Sometimes, speed does matter

* Ridiculously inefficient algorithms

e Very large datasets
Google:
67 billion pages indexed (2014)

5.7 billion searches per day (2014)
Number of pages searched per day??

Program Performance

We'll discuss two things a programmer can do to
improve program performance:

* Good Coding Practices
* Good Algorithm Choice

Good Coding Practices

* Minimize amount of work inside of loops

y = 500

for 1 in range(n):
z = expensive function()
x=5.0*y / 2.0+ z
lst.append(x + 1)

Good Coding Practices

* Minimize amount of work inside of loops

for 1 in friends of friends(n):
for j in friends of friends(n):
do stuff with i and j

Good Coding Practices

* Avoid iterating over data multiple times when possible

for base in nucleotides:

if base == 'A':
code here

for base in nucleotides:

if base == 'C':
code here

for base in nucleotides:

if base == 'T':
code here

for base in nucleotides:

if base == 'G':
code here

for base in nucleotides:

if base == 'A':
code here

elif base == 'C':
code here

elif base == 'T':
code here

elif base == 'G':
code here

Good Algorithm Choice

Good choice of algorithm can have a much
bigger impact on performance than the good
coding practices mentioned.

However good coding practices can be applied
fairly easily

Trying to come up with a better algorithm can
be a (fun!) challenge

Remember: Correctness trumps speed!!

How to compare two algorithms?

Example: Processing pairs

def make pairs(listl, list2):
"""Return a list of pairs.
Each pair is made of corresponding elements of listl and list2.
listl and l1list2 must be of the same length."""

assert make pairs([100, 200, 300], [101, 201, 301]) == [[100, 101],
[200, 201], [300, 301]]

* 2 nested loops vs. 1 loop
* Quadratic (n?) vs. linear (n) time

10

Searching

def search(value, 1l1lst):
"""Return index of wvalue in list 1lst.
The value must be in the list."""

* Any list vs. a sorted list
e Linear (n) vs. logarithmic (log n) time

11

Sorting

def sort(lst):
"""Return a sorted version of the list 1lst.
The input list is not modified."""

assert sort([3, 1, 4, 1, 5, 9, 2, 6, 5]) == [1, 1,
2, 3, 4, 5, 5, 6, 9]

e selection sort vs. quicksort
* 2 nested loops vs. recursive decomposition
* time: quadratic (n?) vs. log-linear (n log n) time

