
Algorithmic complexity:
Speed of algorithms

CSE 160

Spring 2015

University of Washington

1

How fast does your program run?

• Usually, this does not matter

• Correctness trumps speed

• Computer time is much cheaper than human time

• The cost of your program depends on:
– Time to write and verify it

• High cost: salaries

– Time to run it
• Low cost: electricity

• An inefficient program may give results faster

2

Sometimes, speed does matter

• Ridiculously inefficient algorithms

• Very large datasets

Google:

67 billion pages indexed (2014)

5.7 billion searches per day (2014)

Number of pages searched per day??

3

Program Performance

We’ll discuss two things a programmer can do to
improve program performance:

• Good Coding Practices

• Good Algorithm Choice

4

Good Coding Practices

• Minimize amount of work inside of loops

y = 500

for i in range(n):

 z = expensive_function()

 x = 5.0 * y / 2.0 + z

 lst.append(x + i)

5

Good Coding Practices

• Minimize amount of work inside of loops

for i in friends_of_friends(n):

 for j in friends_of_friends(n):

 # do stuff with i and j

6

Good Coding Practices

for base in nucleotides:

 if base == 'A':

 # code here

for base in nucleotides:

 if base == 'C':

 # code here

for base in nucleotides:

 if base == 'T':

 # code here

for base in nucleotides:

 if base == 'G':

 # code here

for base in nucleotides:

 if base == 'A':

 # code here

 elif base == 'C':

 # code here

 elif base == 'T':

 # code here

 elif base == 'G':

 # code here

7

• Avoid iterating over data multiple times when possible

Good Algorithm Choice

• Good choice of algorithm can have a much
bigger impact on performance than the good
coding practices mentioned.

• However good coding practices can be applied
fairly easily

• Trying to come up with a better algorithm can
be a (fun!) challenge

• Remember: Correctness trumps speed!!

8

How to compare two algorithms?

9

Example: Processing pairs

def make_pairs(list1, list2):

 """Return a list of pairs.

 Each pair is made of corresponding elements of list1 and list2.

 list1 and list2 must be of the same length."""

 …

assert make_pairs([100, 200, 300], [101, 201, 301]) == [[100, 101],

[200, 201], [300, 301]]

• 2 nested loops vs. 1 loop

• Quadratic (n2) vs. linear (n) time

10

Searching

def search(value, lst):

 """Return index of value in list lst.

 The value must be in the list."""

 …

• Any list vs. a sorted list

• Linear (n) vs. logarithmic (log n) time

11

Sorting

def sort(lst):

 """Return a sorted version of the list lst.

 The input list is not modified."""

 …

assert sort([3, 1, 4, 1, 5, 9, 2, 6, 5]) == [1, 1,

2, 3, 4, 5, 5, 6, 9]

• selection sort vs. quicksort

• 2 nested loops vs. recursive decomposition

• time: quadratic (n2) vs. log-linear (n log n) time

12

