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How fast does your program run?

Usually, this does not matter
Correctness trumps speed

Computer time is much cheaper than human time

The cost of your program depends on:

— Time to write and verify it
* High cost: salaries

— Time to run it
* Low cost: electricity

An inefficient program may give results faster



Sometimes, speed does matter

* Ridiculously inefficient algorithms

e Very large datasets
Google:
67 billion pages indexed (2014)

5.7 billion searches per day (2014)
Number of pages searched per day??




Program Performance

We'll discuss two things a programmer can do to
improve program performance:

* Good Coding Practices
* Good Algorithm Choice



Good Coding Practices

* Minimize amount of work inside of loops

y = 500

for 1 in range(n):
z = expensive function()
x=5.0*y / 2.0+ z
lst.append(x + 1)



Good Coding Practices

* Minimize amount of work inside of loops

for 1 in friends of friends(n):
for j in friends of friends(n):
# do stuff with i and j



Good Coding Practices

* Avoid iterating over data multiple times when possible

for base in nucleotides:

if base == 'A':
# code here

for base in nucleotides:

if base == 'C':
# code here

for base in nucleotides:

if base == 'T':
# code here

for base in nucleotides:

if base == 'G':
# code here

for base in nucleotides:

if base == 'A':
# code here

elif base == 'C':
# code here

elif base == 'T':
# code here

elif base == 'G':
# code here



Good Algorithm Choice

Good choice of algorithm can have a much
bigger impact on performance than the good
coding practices mentioned.

However good coding practices can be applied
fairly easily

Trying to come up with a better algorithm can
be a (fun!) challenge

Remember: Correctness trumps speed!!




How to compare two algorithms?



Example: Processing pairs

def make pairs(listl, list2):
"""Return a list of pairs.
Each pair is made of corresponding elements of listl and list2.
listl and l1list2 must be of the same length."""

assert make pairs([100, 200, 300], [101, 201, 301]) == [[100, 101],
[200, 201], [300, 301]]

* 2 nested loops vs. 1 loop
* Quadratic (n?) vs. linear (n) time
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Searching

def search(value, 1l1lst):
"""Return index of wvalue in list 1lst.
The value must be in the list."""

* Any list vs. a sorted list
e Linear (n) vs. logarithmic (log n) time
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Sorting

def sort(lst):
"""Return a sorted version of the list 1lst.
The input list is not modified."""

assert sort([3, 1, 4, 1, 5, 9, 2, 6, 5]) == [1, 1,
2, 3, 4, 5, 5, 6, 9]

e selection sort vs. quicksort
* 2 nested loops vs. recursive decomposition
* time: quadratic (n?) vs. log-linear (n log n) time



