
Data Abstraction

UW CSE 160

Winter 2016

1

Recall the design exercise

• We created a module or library: a set of related
functions

• The functions operated on the same data structure
– a dictionary associating words with a frequency count

– a list of tuples of measurements

• Each module contained:
– A function to create the data structure

– Functions to query the data structure

– We could have added functions to modify the data
structure

2

Two types of abstraction

Abstraction: Ignoring/hiding some aspects of a thing
• In programming, ignore everything except the specification or

interface
• The program designer decides which details to hide and to expose

Procedural abstraction:
• Define a procedure/function specification
• Hide implementation details

Data abstraction:
• Define what the datatype represents
• Define how to create, query, and modify
• Hide implementation details of representation and of operations

– Also called “encapsulation” or “information hiding”

3

Data abstraction

• Describing word counts:

– “dictionary mapping each word in filename to its
frequency (raw count) in the file represented as an
integer”

– “WordCounts”

• Which do you prefer? Why?

(This must appear in the documentation string of
every function related to field measurements!)

4

Review:
Using the Graph class in networkx

import networkx as nx

g = nx.Graph()

module
name

alias

from networkx import Graph, DiGraph

g = Graph()

g.add_node(1)

g.add_node(2)

g.add_node(3)

g.add_edge(1, 2)

g.add_edge(2, 3)

print g.nodes()

print g.edges()

print g.neighbors(2)

Graph and DiGraph are now
available in the global namespace

5

Representing a graph

• A graph consists of:
– nodes/vertices

– edges among the nodes

• Representations:
– Set of edge pairs

• (a, a), (a, b), (a, c), (b, c), (c, b)

– For each node, a list of neighbors
• { a: [a, b, c], b: [c], c: [b] }

– Matrix with boolean for each entry

a

b c

a b c

a ✓ ✓ ✓

b ✓

c ✓ 6

def read_words(filename):

 """Return dictionary mapping each word in filename to its frequency."""

 wordfile = open(filename)

 word_list = wordfile.read().split()

 wordfile.close()

 wordcounts_dict = {}

 for word in word_list:

 count = wordcounts_dict.setdefault(word, 0)

 wordcounts_dict[word] = count + 1

 return wordcounts_dict

def word_count(wordcounts_dict, word):

 """Return count of the word in the dictionary. """

 return wordcounts_dict.get(word, 0)

def topk(wordcounts_dict, k=10):

 """Return list of (count, word) tuples of the top k most frequent words."""

 counts_with_words = [(c, w) for (w, c) in wordcounts_dict.items()]

 counts_with_words.sort(reverse=True)

 return counts_with_words[0:k]

def total_words(wordcounts_dict):

 """Return the total number of words."""

 return sum(wordcounts_dict.values())

Text analysis module
(group of related functions)
representation = dictionary

program to compute top 5:

wordcounts = read_words(filename)

result = topk(wordcounts, 5)

7

Problems with the implementation

• The wordcounts dictionary is exposed to the client:
the user might corrupt or misuse it.

• If we change our implementation (say, to use a list),
it may break the client program.

We prefer to
– Hide the implementation details from the client
– Collect the data and functions together into one unit

program to compute top 5:

wordcounts = read_words(filename)

result = topk(wordcounts, 5)

8

Datatypes and classes

• A class creates a namespace for:
– Variables to hold the data

– Functions to create, query, and modify
• Each function defined in the class is called a method

– Takes “self” (a value of the class type) as the first argument

• A class defines a datatype
– An object is a value of that type

– Comparison to other types:
• Type is int, value is 22

• Type is the class, value is an object also known as an
instantiation or instance of that type

9

def read_words(filename):

 """Return dictionary mapping each word in filename to its frequency."""

 wordfile = open(filename)

 word_list = wordfile.read().split()

 wordfile.close()

 wordcounts_dict = {}

 for word in word_list:

 count = wordcounts_dict.setdefault(word, 0)

 wordcounts_dict[word] = count + 1

 return wordcounts_dict

def word_count(wordcounts_dict, word):

 """Return count of the word in the dictionary. """

 return wordcounts_dict.get(word, 0)

def topk(wordcounts_dict, k=10):

 """Return list of (count, word) tuples of the top k most frequent words."""

 counts_with_words = [(c, w) for (w, c) in wordcounts_dict.items()]

 counts_with_words.sort(reverse=True)

 return counts_with_words[0:k]

def total_words(wordcounts_dict):

 """Return the total number of words."""

 return sum(wordcounts_dict.values())

Text analysis module
(group of related functions)
representation = dictionary

program to compute top 5:

wordcounts = read_words(filename)

result = topk(wordcounts, 5)

10

class WordCounts:

 """Represents the words in a file."""

 # Internal representation:

 # variable wordcounts is a dictionary mapping words to their frequency

 def read_words(self, filename):

 """Populate a WordCounts object from the given file"""

 word_list = open(filename).read().split()

 self.wordcounts = {}

 for w in word_list:

 self.wordcounts.setdefault(w, 0)

 self.wordcounts[w] += 1

 def word_count(self, word):

 """Return the count of the given word"""

 return self.wordcounts.get(word, 0)

 def topk(self, k=10):

 """Return a list of the top k most frequent words in order"""

 scores_with_words = [(c,w) for (w,c) in self.wordcounts.items()]

 scores_with_words.sort(reverse=True)

 return scores_with_words[0:k]

 def total_words(self):

 """Return the total number of words in the file"""

 return sum(self.wordcounts.values())

Each function in a class is called a method.
Its first argument is of the type of the class.

Text analysis,
as a class

Defines a class
(a datatype)
named
WordCounts

Modifies a
WordCounts
object

Queries a
WordCounts
object

read_words does
not return a value;
it mutates self

The type of self
is WordCounts

wordcounts

read_words

word_count

topk

total_words

The namespace of a
WordCounts object:

dict

fn
fn

fn fn

program to compute top 5:

wc = WordCounts()

wc.read_words(filename)

result = wc.topk(5)

topk takes
2 arguments

The type of wc is
WordCounts

11

program to compute top 5:

wc = WordCounts()

wc.read_words(filename)

result = wc.topk(5)

result = WordCounts.topk(wc, 5)

A namespace,
like a module

A function that takes
two arguments

A value of type
WordCounts Two

equivalent
calls

Weird constructor: it
does not do any work

You have to call a
mutator immediately

afterward

12

Class with constructor
class WordCounts:

 """Represents the words in a file."""

 # Internal representation:

 # variable wordcounts is a dictionary mapping words to their frequency

 def __init__(self, filename):

 """Create a WordCounts object from the given file"""

 words = open(filename).read().split()

 self.wordcounts = {}

 for w in words:

 self.wordcounts.setdefault(w, 0)

 self.wordcounts[w] += 1

 def word_count(self, word):

 """Return the count of the given word"""

 return self.wordcounts.get(word, 0)

 def topk(self, k=10):

 """Return a list of the top k most frequent words in order"""

 scores_with_words = [(c,w) for (w,c) in self.wordcounts.items()]

 scores_with_words.sort(reverse=True)

 return scores_with_words[0:k]

 def total_words(self):

 """Return the total number of words in the file"""

 return sum([c for (w,c) in self.wordcounts])

program to compute top 5:

wc = WordCounts(filename)

result = wc.topk(5)

13

Alternate
implementation

class WordCounts:

 """Represents the words in a file."""

 # Internal representation:

 # variable words is a list of the words in the file

 def __init__(self, filename):

 """Create a WordCounts object from the given file"""

 self.words = open(filename).read().split()

 def word_count(self, word):

 """Return the count of the given word"""

 return self.words.count(word)

 def topk(self, k=10):

 """Return a list of the top k most frequent words in order"""

 scores_with_words = [(self.word_count(w),w) for w in set(self.words)]

 scores_with_words.sort(reverse=True)

 return scores_with_words[0:k]

 def total_words(self):

 """Return the total number of words in the file"""

 return len(self.words)

program to compute top 5:

wc = WordCounts(filename)

result = wc.topk(5)

Exact same program!

words

__init__

word_count

topk

total_words

The namespace of a
WordCounts object:

fn
fn

fn fn

list

14

Quantitative
analysis

 def read_measurements(filename):

 """Return a dictionary mapping column names to data.

 Assumes the first line of the file is column names."""

 datafile = open(filename)

 rawcolumns = zip(*[row.split() for row in datafile])

 columns = dict([(col[0], col[1:]) for col in rawcolumn])

 return columns

 def tofloat(measurements, columnname):

 """Convert each value in the given iterable to a float"""

 return [float(x) for x in measurements[columnname]]

 def STplot(measurements):

 """Generate a scatter plot comparing salinity and temperature"""

 xs = tofloat(measurements, "salt")

 ys = tofloat(measurements, "temp")

 plt.plot(xs, ys)

 plt.show()

 def minimumO2(measurements):

 """Return the minimum value of the oxygen measurement"""

 return min(tofloat(measurements, "o2"))

Program to plot

mydict = read_measurements(filename)

STplot(mydict)

15

Quantitative analysis,
as a class

class Measurements:

 """Represents a set of measurements in UWFORMAT.""“

 def read_measurements(self, filename):

 """Populate a Measurements object from the given file.

 Assumes the first line of the file is column names."""

 datafile = open(filename)

 rawcolumns = zip(*[row.split() for row in datafile])

 self.columns = dict([(col[0], col[1:]) for col in rawcolumn])

 return columns

 def tofloat(self, columnname):

 """Convert each value in the given iterable to a float"""

 return [float(x) for x in self.columns[columnname]]

 def STplot(self):

 """Generate a scatter plot comparing salinity and temperature"""

 xs = tofloat(self.columns, "salt")

 ys = tofloat(self.columns, "temp")

 plt.plot(xs, ys)

 plt.show()

 def minimumO2(self):

 """Return the minimum value of the oxygen measurement"""

 return min(tofloat(self.columns, "o2"))

Program to plot

mm = Measurements()

mm.read_measurements(filename)

mm.STplot()

16

Quantitative analysis,
with a constructor

class Measurements:

 """Represents a set of measurements in UWFORMAT.""“

 def __init__(self, filename):

 """Create a Measurements object from the given file.

 Assumes the first line of the file is column names."""

 datafile = open(filename)

 rawcolumns = zip(*[row.split() for row in datafile])

 self.columns = dict([(col[0], col[1:]) for col in rawcolumn])

 def tofloat(self, columnname):

 """Convert each value in the given iterable to a float"""

 return [float(x) for x in self.columns[columnname]]

 def STplot(self):

 """Generate a scatter plot comparing salinity and temperature"""

 xs = tofloat(self.columns, "salt")

 ys = tofloat(self.columns, "temp")

 plt.plot(xs, ys)

 plt.show()

 def minimumO2(self):

 """Return the minimum value of the oxygen measurement"""

 return min(tofloat(self.columns, "o2"))

Program to plot

mm = Measurements(filename)

mm.STplot()

17

