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Testing 

• Programming to analyze data is powerful 

• It’s useless (or worse!) if the results are not 
correct 

• Correctness is far more important than speed 
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Famous examples 

• Ariane 5 rocket 

• Therac-25 radiation therapy machine 
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Testing does not prove correctness 

• Edsger Dijkstra: “Program testing can be used 
to show the presence of bugs, but never to 
show their absence!” 

 

• Testing can only increase our confidence in 
program correctness. 
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Testing your program 

• How do you know your program is right? 
– Compare its output to a correct output 

• How do you know a correct output? 
– Real data is big 

– You wrote a computer program because it is not 
convenient to compute it by hand 

• Use small inputs so you can compute the 
expected output by hand 
– We did this in HW2 and HW3 with small data sets 
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Testing ≠ debugging 

• Testing:  determining whether your program is 
correct 
– Doesn’t say where or how your program is 

incorrect 

• Debugging:  locating the specific defect in 
your program, and fixing it 
2 key ideas: 

– divide and conquer 

– the scientific method 
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Testing parts of your program 

• Often called “unit testing” 

• Testing that the output of individual functions 
is correct. 

7 



What is a test? 

• A test consists of: 
– an input (sometimes called “test data”) 
– expected output 

• Example test for sum: 
– input:  [1, 2, 3] 
– expected output:  result is 6 
– write the test as:   sum([1, 2, 3]) == 6 

• Example test for sqrt: 
– input:  3.14 
– expected output:  result is within 0.00001 of 1.772 
– ways to write the test: 
• sqrt(3.14) – 1.772 < 0.00001  and  sqrt(3.14) – 1.772 > -0.00001  

• -0.00001 < sqrt(3.14) – 1.772 < 0.00001 

• math.abs(sqrt(3.14) – 1.772) < 0.00001 
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Test results 

• The test passes if the boolean expression evaluates to True 

• The test fails if the boolean expression evaluates to False 

• Use the assert statement: 
assert sum([1, 2, 3]) == 6 

assert math.abs(sqrt(3.14) – 1.772) < 0.00001 

• assert True does nothing 

• assert False crashes the program 

– and prints a message 
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Where to write test cases 

• At the top level:  is run every time you load your program 
def hypotenuse(a, b): 

  … body of hypotenuse … 

assert hypotenuse(3, 4) == 5 

assert hypotenuse(5, 12) == 13 

 

• In a test function:  is run when you invoke the function  
def hypotenuse(a, b): 

  … body of hypotenuse … 

def test_hypotenuse(): 

  assert hypotenuse(3, 4) == 5 

  assert hypotenuse(5, 12) == 1 
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(As in HW 4) 

(As in HW 3 and HW5) 



Assertions are not just for test cases 

• Use assertions throughout your code 

• Documents what you think is true about your 
algorithm 

• Lets you know immediately when something 
goes wrong 

– The longer between a code mistake and the 
programmer noticing, the harder it is to debug  

 

 

 11 



Assertions make debugging easier 

• Common, but unfortunate, course of events: 
– Code contains a mistake (incorrect assumption or algorithm) 
– Intermediate value (e.g., in local variable, or result of a function 

call) is incorrect 
– That value is used in other computations, or copied into other 

variables 
– Eventually, the user notices that the overall program produces a 

wrong result 
– Where is the mistake in the program?  It could be anywhere. 

• Suppose you had 10 assertions evenly distributed in your 
code 
– When one fails, you can localize the mistake to 1/10 of your 

code (the part between the last assertion that passes and the 
first one that fails) 
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Where to write assertions 

• Function entry:  are arguments of expected 
type/size/value/shape? 
– Place blame on the caller before the function fails 

• Function exit:  is result correct? 

• Places with tricky or interesting code 

• Assertions are ordinary statements; e.g., can 
appear within a loop: 
for n in myNumbers: 

  assert type(n) == int or type(n) == float 
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Where not to write assertions 

• Don’t clutter the code 
– (Same rule as for comments) 

• Don’t write assertions that are certain to succeed 
– The existence of an assertion tells a programmer that 

it might possibly fail 

• Don’t need to write an assertion if the following 
code would fail informatively: 
assert type(name) == str 

print "Hello, " + name 

• Write assertions where they may be useful for 
debugging 
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What to write assertions about 

• Results of computations 

• Correctly-formed data structures 
assert 0 <= index < len(mylist) 

assert len(list1) == len(list2) 
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When to write tests 

• Two possibilities: 
– Write code first, then write tests 
– Write tests first, then write code 

• It’s best to write tests first 
 

• If you write the code first, you remember the implementation while 
writing the tests 
– You are likely to make the same mistakes that you made in the 

implementation (e.g. assuming that negative values would never be 
present) 

• If you write the tests first, you will think more about the 
functionality than about a particular implementation 
– You might notice some aspect of behavior that you would have made a 

mistake about, some special case of input that you would have 
forgotten to handle 
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Write the whole test 

• A common mistake: 
1. Write the function 
2. Make up test inputs 
3. Run the function 
4. Use the result as the expected output – BAD!! 

• You didn’t write a full test: only half of a test! 
– Created the tests inputs, but not the expected output 

• The test does not determine whether the 
function is correct 
– Only determines that it continues to be as correct (or 

incorrect) as it was before 
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Tests outside of function body are for 
behavior described in the specification 
def roots(a, b, c): 

  """Returns a list of the two roots of ax**2 + bx + c.""" 

  ... Body of roots S… 

 
Tests implementation-specific behavior outside of 
function body: (BAD) 
assert roots(1, 0, -1) == [-1, 1] 

 

• Does the specification imply that this should be 
the order these two roots are returned? 

• Assertions inside a routine can be used for 
implementation-specific behavior 
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Tests prevent you from introducing 
errors when you modify a function body 

• Abstraction:  the implementation details do 
not matter 

• As long as the specification of the function 
remains the same, tests of the external 
behavior of the function should still apply. 

 

• Preventing introducing errors when you make 
a change is called “regression testing” 
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Coming up with good test cases 

• Think about and test “corner cases” 

– Numbers: 

 

 

– Lists: 
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Coming up with good test cases 

• Think about and test “corner cases” 
– Numbers: 

• int vs. float values (remember not to test for equality with 
floats) 

• Zero 
• Negative values 

– Lists: 
• Empty list 
• Lists containing duplicate values (including all the same 

value) 
• Lists in ascending order/descending order 
• Mix of types in list (if specification does not rule out) 
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Testing Approaches 

• Black box testing - Choose test data without 
looking at implementation, just test behavior 
mentioned in the specification  

  

• Glass box (white box, clear box) testing  -
Choose test data with knowledge of 
implementation (e.g. test that all paths 
through your code are exercised and correct) 
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def isPrime(x):  

    """Assumes x is a nonnegative int  

    Returns True if x is prime; False otherwise"""  

if x <= 2:  

    return False  

for i in range(2, x):  

    if x % i == 0:  

        return False  

return True  
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Tests might not reveal an error 

def mean(numbers): 

  """Returns the average of the argument list. 

     The argument must be a non-empty list of numbers.""" 

  return sum(numbers)/len(numbers) 

# Tests 

assert mean([1, 2, 3, 4, 5]) == 3 

assert mean([1, 2.1, 3.2]) == 2.1 

 

This implementation is elegant, but wrong! 
 

mean([1,2,3,4]) 
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Don’t write meaningless tests 

def mean(numbers): 

  """Returns the average of the argument list. 

     The argument must be a non-empty list of numbers.""" 

  return sum(numbers)/len(numbers)  

 

Unnecessary tests.  Don’t write these: 
mean([1, 2, "hello"]) 

mean("hello") 

mean([]) 
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