
Testing

UW CSE 160

Winter 2016

1

Testing

• Programming to analyze data is powerful

• It’s useless (or worse!) if the results are not
correct

• Correctness is far more important than speed

2

Famous examples

• Ariane 5 rocket

• Therac-25 radiation therapy machine

3

Testing does not prove correctness

• Edsger Dijkstra: “Program testing can be used
to show the presence of bugs, but never to
show their absence!”

• Testing can only increase our confidence in
program correctness.

4

Testing your program

• How do you know your program is right?
– Compare its output to a correct output

• How do you know a correct output?
– Real data is big

– You wrote a computer program because it is not
convenient to compute it by hand

• Use small inputs so you can compute the
expected output by hand
– We did this in HW2 and HW3 with small data sets

5

Testing ≠ debugging

• Testing: determining whether your program is
correct
– Doesn’t say where or how your program is

incorrect

• Debugging: locating the specific defect in
your program, and fixing it
2 key ideas:

– divide and conquer

– the scientific method

6

Testing parts of your program

• Often called “unit testing”

• Testing that the output of individual functions
is correct.

7

What is a test?

• A test consists of:
– an input (sometimes called “test data”)
– expected output

• Example test for sum:
– input: [1, 2, 3]
– expected output: result is 6
– write the test as: sum([1, 2, 3]) == 6

• Example test for sqrt:
– input: 3.14
– expected output: result is within 0.00001 of 1.772
– ways to write the test:
• sqrt(3.14) – 1.772 < 0.00001 and sqrt(3.14) – 1.772 > -0.00001

• -0.00001 < sqrt(3.14) – 1.772 < 0.00001

• math.abs(sqrt(3.14) – 1.772) < 0.00001

 8

Test results

• The test passes if the boolean expression evaluates to True

• The test fails if the boolean expression evaluates to False

• Use the assert statement:
assert sum([1, 2, 3]) == 6

assert math.abs(sqrt(3.14) – 1.772) < 0.00001

• assert True does nothing

• assert False crashes the program

– and prints a message

9

Where to write test cases

• At the top level: is run every time you load your program
def hypotenuse(a, b):

 … body of hypotenuse …

assert hypotenuse(3, 4) == 5

assert hypotenuse(5, 12) == 13

• In a test function: is run when you invoke the function
def hypotenuse(a, b):

 … body of hypotenuse …

def test_hypotenuse():

 assert hypotenuse(3, 4) == 5

 assert hypotenuse(5, 12) == 1

10

(As in HW 4)

(As in HW 3 and HW5)

Assertions are not just for test cases

• Use assertions throughout your code

• Documents what you think is true about your
algorithm

• Lets you know immediately when something
goes wrong

– The longer between a code mistake and the
programmer noticing, the harder it is to debug

 11

Assertions make debugging easier

• Common, but unfortunate, course of events:
– Code contains a mistake (incorrect assumption or algorithm)
– Intermediate value (e.g., in local variable, or result of a function

call) is incorrect
– That value is used in other computations, or copied into other

variables
– Eventually, the user notices that the overall program produces a

wrong result
– Where is the mistake in the program? It could be anywhere.

• Suppose you had 10 assertions evenly distributed in your
code
– When one fails, you can localize the mistake to 1/10 of your

code (the part between the last assertion that passes and the
first one that fails)

12

Where to write assertions

• Function entry: are arguments of expected
type/size/value/shape?
– Place blame on the caller before the function fails

• Function exit: is result correct?

• Places with tricky or interesting code

• Assertions are ordinary statements; e.g., can
appear within a loop:
for n in myNumbers:

 assert type(n) == int or type(n) == float

13

Where not to write assertions

• Don’t clutter the code
– (Same rule as for comments)

• Don’t write assertions that are certain to succeed
– The existence of an assertion tells a programmer that

it might possibly fail

• Don’t need to write an assertion if the following
code would fail informatively:
assert type(name) == str

print "Hello, " + name

• Write assertions where they may be useful for
debugging

14

What to write assertions about

• Results of computations

• Correctly-formed data structures
assert 0 <= index < len(mylist)

assert len(list1) == len(list2)

15

When to write tests

• Two possibilities:
– Write code first, then write tests
– Write tests first, then write code

• It’s best to write tests first

• If you write the code first, you remember the implementation while
writing the tests
– You are likely to make the same mistakes that you made in the

implementation (e.g. assuming that negative values would never be
present)

• If you write the tests first, you will think more about the
functionality than about a particular implementation
– You might notice some aspect of behavior that you would have made a

mistake about, some special case of input that you would have
forgotten to handle

 16

Write the whole test

• A common mistake:
1. Write the function
2. Make up test inputs
3. Run the function
4. Use the result as the expected output – BAD!!

• You didn’t write a full test: only half of a test!
– Created the tests inputs, but not the expected output

• The test does not determine whether the
function is correct
– Only determines that it continues to be as correct (or

incorrect) as it was before

17

Tests outside of function body are for
behavior described in the specification
def roots(a, b, c):

 """Returns a list of the two roots of ax**2 + bx + c."""

 ... Body of roots S…

Tests implementation-specific behavior outside of
function body: (BAD)
assert roots(1, 0, -1) == [-1, 1]

• Does the specification imply that this should be
the order these two roots are returned?

• Assertions inside a routine can be used for
implementation-specific behavior

18

Tests prevent you from introducing
errors when you modify a function body

• Abstraction: the implementation details do
not matter

• As long as the specification of the function
remains the same, tests of the external
behavior of the function should still apply.

• Preventing introducing errors when you make
a change is called “regression testing”

19

Coming up with good test cases

• Think about and test “corner cases”

– Numbers:

– Lists:

20

Coming up with good test cases

• Think about and test “corner cases”
– Numbers:

• int vs. float values (remember not to test for equality with
floats)

• Zero
• Negative values

– Lists:
• Empty list
• Lists containing duplicate values (including all the same

value)
• Lists in ascending order/descending order
• Mix of types in list (if specification does not rule out)

21

Testing Approaches

• Black box testing - Choose test data without
looking at implementation, just test behavior
mentioned in the specification

• Glass box (white box, clear box) testing -
Choose test data with knowledge of
implementation (e.g. test that all paths
through your code are exercised and correct)

22

def isPrime(x):

 """Assumes x is a nonnegative int

 Returns True if x is prime; False otherwise"""

if x <= 2:

 return False

for i in range(2, x):

 if x % i == 0:

 return False

return True

23

Tests might not reveal an error

def mean(numbers):

 """Returns the average of the argument list.

 The argument must be a non-empty list of numbers."""

 return sum(numbers)/len(numbers)

Tests

assert mean([1, 2, 3, 4, 5]) == 3

assert mean([1, 2.1, 3.2]) == 2.1

This implementation is elegant, but wrong!

mean([1,2,3,4])

24

Don’t write meaningless tests

def mean(numbers):

 """Returns the average of the argument list.

 The argument must be a non-empty list of numbers."""

 return sum(numbers)/len(numbers)

Unnecessary tests. Don’t write these:
mean([1, 2, "hello"])

mean("hello")

mean([])

25

