Control flow

Ruth Anderson
UW CSE 160
Winter 2016

%& Repeating yourself

V Making decisions

Temperature conversion chart (2

Recall exercise from previous lecture

fahr = 30

cent = (fahr - 32) / 9.0
print fahr, cent

fahr = 40

cent = (fahr - 32) / 9.0
print fahr, cent

fahr = 50

cent = (fahr - 32) / 9.0
print fahr, cent

fahr = 60

cent = (fahr - 32) / 9.0
print fahr, cent

fahr = 70

cent = (fahr - 32) / 9.0
print fahr, cent

print "All done"

*

*

*

*

*

A

Output:
30-1.11

40 4.44
5010.0

60 15.56
7021.11
All done 3

. N
Temperature conversion chart Q@

A better way to repeat yourself:

loop variable or

Colonis

for loop iteration variable ! A list required

é‘?ﬁé’fﬁiﬁ& £ in [30,40,50,60,70]:

Execute the body prlnt f, (f—32) /9.0*5
5 times:
+ oncewithf=30 [print "All done" Output:
e once with f =40 30-1.11
to 40 4.44
5010.0
60 15.56

Indentation 7021.11
is significant All done 4

How a loop is executed:
Transformation approach

Idea: convert a for loop into something we know how to execute

1. Evaluate the sequence expression

2. Write an assignment to the loop
variable, for each sequence
element

3. Write a copy of the loop after each
assignment

4. Execute the resulting statements
State of the

i=1 computer: Printed output:
for 1 in [1,4,9]: print i 9 1
print 1 i=4 . 4
print 1i
i=9 9

print 1i

How a loop is executed:
Direct approach

1. Evaluate the sequence expression

2. While there are sequence
elements left:

a) Assign the loop variable to the next
remaining sequence element

b) Execute the loop body

State of the
ICurrent location in list computer:

for i in [1,4,9]: i 9
print 1 .

Printed output:

1
4
9

The body can be multiple statements

Execute whole body, then execute whole body again, etc.

for i in [3,4,5]:
print "Start body"!
print 1
print 1i*i

__loop body:
3 statements

Convention: often useiorjas loop variable if values are integers

This is an exception to the rule that
variable names should be descriptive

The body can be multiple statements

Execute whole body, then execute whole body again, etc.

for i in [3,4,5]: . Output:
print "Start body" Start body
. . loop body: 3
print 1 =
Nt i%; 3 statements 9
rin 1”1
P — Start body
4
16
Start body
5
25

Convention: often useiorjas loop variable if values are integers

This is an exception to the rule that
variable names should be descriptive

Indentation is significant

* Every statement in the body must have exactly the same indentation
* That’s how Python knows where the body ends
for i in [3,4,5]:

print "Start body"

Error! Dprint i
print 1i*i1i

 Compare the results of these loops:
for £ in [30,40,50,60,70]:

print £, (£-32)/9.0*5
print "All done"

for £ in [30,40,50,60,70]:
print £, (£-32)/9.0%*5
print "All done"

Nested Loops

How many statements does this loop contain?

for 1 in [0,1]:
print "Outer", 1
for jJ in [2,3]:
print " Inner", j
print " Sum", i+j

print "Outer", 1

What is the output?

10

Nested Loops

How many statements does this loop contain?

N\

for 1 in [0,1]:
print "Outer", 1
for jJ in [2,3]:

loop body:
2 statement

print " Sum",

print "Outer", 1

What is the output?

N loop body:

- 1] LA
nested { print Inner”, 3 statements
S

Output:
Outer 0

Inner 2
Sum 2
Inner 3
Sum 3
Outer O
Outer 1
Inner 2
Sum 3
Inner 3
Sum 4
Outer 1,

Understand loops through the
transformation approach
Key idea:

1. Assign each sequence element to the loop variable
2. Duplicate the body

for i in [0,1]: i=0 i=0
print "Outer", 1 print "Outer", 1 print "Outer", 1
for j in [2,3]: for j in [2,3]: j =2
print " Inner", j print " Inner", j print " Inner", j
i=1 j =3
print "Outer", 1 print " Inner", J
for j in [2,3]: i=1

print " Inner", j print "Outer", i
for j in [2,3]:
print " Inner", ;]

Test your understanding of loops

Puzzle 1: Qutput:
for i in [0,1]:

print 1

print 1
Puzzle 2:

i=25

for 1 in []:

print 1 Reusing loop variable

Puzzle 3: (don’t do this!)
for i in [0,1]:
print " r", 1i

for i in [2,3]: outer

. . . _ inner | |Joop
print Inner", 1}"bm> body

print "Outer", i body

Test your understanding of loops

Puzzle 1:
for i in [0,1]:
print 1
print 1
Puzzle 2:
i=25
for 1 in []:
print 1
Puzzle 3:
for 1 in [0,1]:

print " r",
for 1 in [2,3]:
print " Inner",

print "Outer",

Output:

Reusing loop variable

(don’t do this!)

outer
inner | |Joop
1 [loop | body

body

0
1
1

(no output)

Outer 0
Inner 2
Inner 3
Outer 3
Outer 1
Inner 2
Inner 3
Outer 3 14

Fix this loop

Goal: print 1, 2, 3, .., 48, 49, 50
for tens digit in [0, 1, 2, 3, 4]:
for ones digit in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
print tens digit * 10 + ones digit

What does it actually print?
How can we change it to correct its output?

Moral: Watch out for edge conditions (beginning
or end of loop)

15

Some Fixes

for tens digit in [0, 1, 2, 3, 4]:
for ones digit in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
print tens digit * 10 + ones digit + 1

for tens digit in [0, 1, 2, 3, 4]:
for ones digit in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
print tens digit * 10 + ones digit

for ones digit in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
print ones digit
for tens_digit in [1, 2, 3, 4]:
for ones digit in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
print tens digit * 10 + ones_digit
print 50

The range function

A typical for loop does not use an explicit list:

for i in range (5)=— O1aaa
.. body ..

Upper limit
(exclusive)

range (5) produces [0,1,2,3,4]

Lower limit
(inclusive)

range (1,5) produces [1,2,3,4]

step (distance
between elements)

range (1 WZ) produces [1,3,5,7,9]

17

Some Loops

Sum of a list of values, what wvalues?
result = 0
for element in range(5):
result = result + element
print "The sum is: " + str(result)

Sum of a list of values, what wvalues?
result = 0
for element in range(5,1,-1):
result = result + element
print "The sum is:", result

Sum of a list of values, what wvalues?
result = 0
for element in range(0,8,2):
result = result + element
print "The sum is:", result

Sum of a list of values, what wvalues?
result = 0
size = 5
for element in range(size):
result = result + element

print "When size = " + str(size) + " result is " + str(result)

18

Some More Loops

for size in [1, 2, 3, 4]:
result = 0
for element in range(size):
result = result + element
print "size=" + str(size) + " result=" + str(result)

print " We are done!"

What happens if we move result = 0
to be the first line of the program instead?

19

How to process a list:
One element at a time

A common pattern when processing a list:

result = Initial value # Sum of a list

for element in list: result = 0
for element in mylist:

result = updated result result = result + element
use result print result

Initial value is a correct result for an empty list

As each element is processed, result isa
correct result for a prefix of the list

When all elements have been processed,
result is a correct result for the whole list

20

Examples of list processing

result = initial value

Product of a list: for element in list:
result =1 result = updated result

for element in mylist:
result = result * element

Maximum of a list:
result = mylist[0}—=
for element in mylist:

result = max(result, element)

Approximate the value3 by 1+2/3+4/9 +8/27 + 16/81 + ...
=(2/3)° + (2/3)* + (2/3)% + (2/3)3 + ... + (2/3)10
result = 0
for element in range(1l1):
result = result + (2.0/3.0) **element

The first element of the
list (counting from zero)

o

21

Making decisions %

* How do we compute absolute value?
abs(5) =5

abs(0) =0

abs(-22) =22

22

Absolute value solution

If the value is negative, negate it.
Otherwise, use the original value.

val = -10

if val < O:
result =
else:
result =

print result

calculate absolute value of wval

- val

val

Another approach
that does the same thing
without using result:

val = -10

if val < O:
print - val
else:
print val

In this example, result will always be assigned a value.

23

Absolute value solution

As with loops, a sequence of statements could
be used in place of a single statement:

val = -10

calculate absolute value of val
if val < O:

result = - val

print "val is negative!"

print "I had to do extra work!"
else:

result = val

print "val is positive"
print result

Absolute value solution

What happens here?

val = 5

calculate absolute value of val
if val < O:

result = - val

print "val is negative!"
else:

for i in range(val):

print "val is positive!"

result = val

print result

25

Another if

It is not required that anything happens...

val = -10

if val < O:
print "negative value!"

What happens when val = 57?

26

The if body can be any statements

height is in km # height is in km
if height > 100: _ if haiacht > 500:
"0 | print "space”) SEeON S ME oY L ginpapetoo:
else: elifphenghtspabé"”
" if height > 50; — Erecutiggnggirbcrafdbosphere
t{ print "mesosphere" AL[?ehfelgf;? o ﬁgli%neétaéphere"
else else: elpelnt "stratosphere"
clause| | if height > 20: els&:height > 20:
~t{ print "stratosphere" prponinttiepoapbepkbére™”
: else: else:
_e| print "troposphere" print "troposphere"
troposphere stratosphere mesosphere | space
LA R e,
0 10 2 30 40 0 60 70 80 90 100

arth

Version 1

height is in km
if height > 100:

then) " " Execution gets here only
clause{ print "space if “height <= 100" is true
else:
if height > 50 — Execution gets here only

tf ":" h o if “height <=100" is true
prin mesosphere AND “height > 50” is true

else else:
clause; if height > 20:
t{ print "stratosphere"

else:

o] print "troposphere"

troposphere stratosphere mesosphere
HEEEEEEE IR IR e
TTTTTTTRrTTrTr I T T T T T T T Er T T T T T

0 10 2 30 40 0 60 70 80

Version 1

height is in km
if height > 100:
print "space"
else:
if height > 50:
print "mesosphere"
else:
if height > 20:
print '"stratosphere"
else:

print "troposphere"

stratosphere

10 2 30 40 0

Version 2

if height > 50:
if height > 100:
print '"space"
else:
print "mesosphere"
else:
if height > 20:
print "stratosphere"
else:
print "troposphere"

troposphere stratosphere mesosphere space
IIIIIIII L ||||I||| I IIIIIIIIIIIII L S km

EEEEEEEEEEREEE IBEEEE EEEEEEEEEEE ERE
0 10 2 30 40 0 60 70) 90 100 ~above

earth

Version 3 (Best)

if height > 100:
print "space"
elif height > 50:
print "mesosphere"
elif height > 20:
print "stratosphere"
else:
print "troposphere"

ONE of the print statements is guaranteed to execute:
whichever condition it encounters first that is true

|I||||I||||100|||31above

earth

troposphere stratosphere mesosphere space

AN IR IR e A

TTTTTT T TTTTTTT] TTTTTT km
2 0

I
I
0 10 60 70 80 90

Order Matters

version 3 # broken version 3
if height > 100: if height > 20:
print "space" print "stratosphere"
elif height > 50: elif height > 50.:
print "mesosphere" print "mesosphere"
elif height > 20: elif height > 100:
print "stratosphere" print "space"
else: else:
print "troposphere" print "troposphere"

Try height = 72 on both versions, what happens?

I O I e
0 10 2 30 40 0 60 70 80 90

|I||||I||||100|||3zabove

earth

troposphere stratosphere mesosphere space
L] L]
TTTT] TTTTTT

Incomplete Version 3

incomplete version 3
if height > 100:
print "space"
elif height > 50:
print "mesosphere"
elif height > 20:
print "stratosphere"

In this case it is possible that nothing is printed at all, when?

R S km

|||||||||||100|||33;;,|Oove

earth

troposphere stratosphere mesosphere space
HEEEEEEEE IR IR e
TTTTTT T TTTTTTT] TTTTTT

2 0

60 70 80 90

What Happens Here?

height is in km
if height > 100:

print "space"
if height > 50:

print "mesosphere"
if height > 20:

print "stratosphere"
else:

print "troposphere"

Try height =72

troposphere stratosphere mesosp
IIIIIIII L ||||I|||||| I A R A

|
| EEEEEEEEEEREEE IBEEEE EEEEEEEEEEEEEE ERE
0 10 2 30 40 0 60 70) 90 100 above

earth

here space
||
|

The then clause or the else clause
is executed
speed = 54
limit = 55
1f speed <= limit:
print "Good job!"
else:
print "You owe $", speed/fine

What if we change speed to 647

35

