
Control flow

Ruth Anderson

UW CSE 160

Winter 2016

1

Repeating yourself

Making decisions

2

Temperature conversion chart

Recall exercise from previous lecture

fahr = 30

cent = (fahr - 32) / 9.0 * 5

print fahr, cent

fahr = 40

cent = (fahr - 32) / 9.0 * 5

print fahr, cent

fahr = 50

cent = (fahr - 32) / 9.0 * 5

print fahr, cent

fahr = 60

cent = (fahr - 32) / 9.0 * 5

print fahr, cent

fahr = 70

cent = (fahr - 32) / 9.0 * 5

print fahr, cent

print "All done"

Output:
30 -1.11
40 4.44
50 10.0
60 15.56
70 21.11
All done 3

Temperature conversion chart

A better way to repeat yourself:

for f in [30,40,50,60,70]:

 print f, (f-32)/9.0*5

print "All done"

Loop body
is indented

A list

Indentation
is significant

for loop

Execute the body
5 times:
• once with f = 30
• once with f = 40
• …

loop variable or
iteration variable

Output:
30 -1.11
40 4.44
50 10.0
60 15.56
70 21.11
All done

Colon is
required

4

i = 1

print i

i = 4

print i

i = 9

print i

How a loop is executed:
Transformation approach

for i in [1,4,9]:

 print i

State of the
computer: Printed output:

1
4
9

i: 1 i: 4 i: 9

Idea: convert a for loop into something we know how to execute

1. Evaluate the sequence expression
2. Write an assignment to the loop

variable, for each sequence
element

3. Write a copy of the loop after each
assignment

4. Execute the resulting statements

5

for i in [1,4,9]:

 print i

How a loop is executed:
Direct approach

Printed output:

1
4
9

i: 1 i: 4 i: 9

Current location in list

State of the
computer:

1. Evaluate the sequence expression

2. While there are sequence
elements left:

a) Assign the loop variable to the next
remaining sequence element

b) Execute the loop body

6

The body can be multiple statements

Execute whole body, then execute whole body again, etc.

for i in [3,4,5]:

 print "Start body"

 print i

 print i*i

Convention: often use i or j as loop variable if values are integers

This is an exception to the rule that
variable names should be descriptive

loop body:
3 statements

7

The body can be multiple statements

Execute whole body, then execute whole body again, etc.

for i in [3,4,5]:

 print "Start body"

 print i

 print i*i

Convention: often use i or j as loop variable if values are integers

This is an exception to the rule that
variable names should be descriptive

Output:
Start body
3
9
Start body
4
16
Start body
5
25

NOT:
Start body
Start body
Start body
3
4
5
9
16
25

loop body:
3 statements

8

Indentation is significant

• Every statement in the body must have exactly the same indentation
• That’s how Python knows where the body ends
for i in [3,4,5]:

 print "Start body"

 print i

 print i*i

• Compare the results of these loops:
for f in [30,40,50,60,70]:

 print f, (f-32)/9.0*5

print "All done"

for f in [30,40,50,60,70]:

 print f, (f-32)/9.0*5

 print "All done"

Error!

9

Nested Loops

How many statements does this loop contain?

 for i in [0,1]:

 print "Outer", i

 for j in [2,3]:

 print " Inner", j

 print " Sum", i+j

 print "Outer", i

What is the output?
10

Nested Loops

How many statements does this loop contain?

 for i in [0,1]:

 print "Outer", i

 for j in [2,3]:

 print " Inner", j

 print " Sum", i+j

 print "Outer", i

What is the output?

Output:
Outer 0
 Inner 2
 Sum 2
 Inner 3
 Sum 3
Outer 0
Outer 1
 Inner 2
 Sum 3
 Inner 3
 Sum 4
Outer 1

loop body:
3 statements “nested”

loop body:
2 statements

11

Key idea:

1. Assign each sequence element to the loop variable

2. Duplicate the body

Understand loops through the
transformation approach

for i in [0,1]:

 print "Outer", i

 for j in [2,3]:

 print " Inner", j

i = 0

print "Outer", i

for j in [2,3]:

 print " Inner", j

i = 1

print "Outer", i

for j in [2,3]:

 print " Inner", j

i = 0

print "Outer", i

j = 2

print " Inner", j

j = 3

print " Inner", j

i = 1

print "Outer", i

for j in [2,3]:

 print " Inner", j 12

Reusing loop variable
(don’t do this!)

Test your understanding of loops
Puzzle 1:

for i in [0,1]:

 print i

print i

Puzzle 2:
i = 5

for i in []:

 print i

Puzzle 3:
for i in [0,1]:

 print "Outer", i

 for i in [2,3]:

 print " Inner", i

 print "Outer", i

inner
loop
body

outer
loop
body

Output:

13

Reusing loop variable
(don’t do this!)

Test your understanding of loops
Puzzle 1:

for i in [0,1]:

 print i

print i

Puzzle 2:
i = 5

for i in []:

 print i

Puzzle 3:
for i in [0,1]:

 print "Outer", i

 for i in [2,3]:

 print " Inner", i

 print "Outer", i

inner
loop
body

outer
loop
body

Outer 0
 Inner 2
 Inner 3
Outer 3
Outer 1
 Inner 2
 Inner 3
Outer 3

0
1
1

Output:

(no output)

14

Fix this loop

Goal: print 1, 2, 3, …, 48, 49, 50

for tens_digit in [0, 1, 2, 3, 4]:

 for ones_digit in [1, 2, 3, 4, 5, 6, 7, 8, 9]:

 print tens_digit * 10 + ones_digit

What does it actually print?

How can we change it to correct its output?

Moral: Watch out for edge conditions (beginning
or end of loop)

15

Some Fixes

for tens_digit in [0, 1, 2, 3, 4]:

 for ones_digit in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:

 print tens_digit * 10 + ones_digit + 1

for tens_digit in [0, 1, 2, 3, 4]:

 for ones_digit in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

 print tens_digit * 10 + ones_digit

for ones_digit in [1, 2, 3, 4, 5, 6, 7, 8, 9]:

 print ones_digit

for tens_digit in [1, 2, 3, 4]:

 for ones_digit in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:

 print tens_digit * 10 + ones_digit

print 50

 16

The range function

A typical for loop does not use an explicit list:

for i in range(5):

 … body …

range(5) produces [0,1,2,3,4]

range(1,5) produces [1,2,3,4]

range(1,10,2) produces [1,3,5,7,9]

The list
[0,1,2,3,4]

Upper limit
(exclusive)

Lower limit
(inclusive)

step (distance
between elements)

17

Some Loops
Sum of a list of values, what values?

result = 0

for element in range(5):

 result = result + element

print "The sum is: " + str(result)

Sum of a list of values, what values?

result = 0

for element in range(5,1,-1):

 result = result + element

print "The sum is:", result

Sum of a list of values, what values?

result = 0

for element in range(0,8,2):

 result = result + element

print "The sum is:", result

Sum of a list of values, what values?

result = 0

size = 5

for element in range(size):

 result = result + element

print "When size = " + str(size) + " result is " + str(result)

18

Some More Loops

for size in [1, 2, 3, 4]:

 result = 0

 for element in range(size):

 result = result + element

 print "size=" + str(size) + " result=" + str(result)

print " We are done!"

19

What happens if we move result = 0
 to be the first line of the program instead?

How to process a list:
One element at a time

• A common pattern when processing a list:
result = initial_value

for element in list:

 result = updated result

use result

• initial_value is a correct result for an empty list

• As each element is processed, result is a
correct result for a prefix of the list

• When all elements have been processed,
result is a correct result for the whole list

Sum of a list

result = 0

for element in mylist:

 result = result + element

print result

20

Examples of list processing

• Product of a list:
result = 1

for element in mylist:

 result = result * element

• Maximum of a list:
result = mylist[0]

for element in mylist:

 result = max(result, element)

• Approximate the value 3 by 1 + 2/3 + 4/9 + 8/27 + 16/81 + …
= (2/3)0 + (2/3)1 + (2/3)2 + (2/3)3 + … + (2/3)10
result = 0

for element in range(11):

 result = result + (2.0/3.0)**element

result = initial_value

for element in list:

 result = updated result

The first element of the
list (counting from zero)

21

Making decisions

• How do we compute absolute value?

abs(5) = 5

abs(0) = 0

abs(-22) = 22

22

Absolute value solution

If the value is negative, negate it.

Otherwise, use the original value.

val = -10

calculate absolute value of val

if val < 0:

 result = - val

else:

 result = val

print result

val = -10

if val < 0:

 print - val

else:

 print val

23
In this example, result will always be assigned a value.

Another approach
that does the same thing
without using result:

Absolute value solution

As with loops, a sequence of statements could
be used in place of a single statement:

val = -10

calculate absolute value of val

if val < 0:

 result = - val

 print "val is negative!"

 print "I had to do extra work!"

else:

 result = val

 print "val is positive"

print result
24

Absolute value solution

What happens here?

 val = 5

calculate absolute value of val

if val < 0:

 result = - val

 print "val is negative!"

else:

 for i in range(val):

 print "val is positive!"

 result = val

print result

25

Another if

It is not required that anything happens…

val = -10

if val < 0:

 print "negative value!"

26

What happens when val = 5?

Execution gets here only
if “height > 100” is false

AND “height > 50” is true

The if body can be any statements

height is in km

if height > 100:

 print "space"

else:

 if height > 50:

 print "mesosphere"

 else:

 if height > 20:

 print "stratosphere"

 else:

 print "troposphere"

height is in km

if height > 100:

 print "space"

elif height > 50:

 print "mesosphere"

elif height > 20:

 print "stratosphere"

else:

 print "troposphere"

height is in km

if height > 50:

 if height > 100:

 print "space"

 else:

 print "mesosphere"

else:

 if height > 20:

 print "stratosphere"

 else:

 print "troposphere"

then
clause

else
clause

t

e
t

e

0 10 20 30 40 50 60 70 80 90 100

troposphere stratosphere mesosphere space
km
above
earth

Execution gets here only
if “height > 100” is false

27

Execution gets here only
if “height <= 100” is true
AND “height > 50” is true

Version 1

height is in km

if height > 100:

 print "space"

else:

 if height > 50:

 print "mesosphere"

 else:

 if height > 20:

 print "stratosphere"

 else:

 print "troposphere"

then
clause

else
clause

t

e
t

e

Execution gets here only
if “height <= 100” is true

0 10 20 30 40 50 60 70 80 90 100

troposphere stratosphere mesosphere space
km
above
earth

28

Version 1

height is in km

if height > 100:

 print "space"

else:

 if height > 50:

 print "mesosphere"

 else:

 if height > 20:

 print "stratosphere"

 else:

 print "troposphere"

0 10 20 30 40 50 60 70 80 90 100

troposphere stratosphere mesosphere space
km
above
earth

29

Version 2

if height > 50:

 if height > 100:

 print "space"

 else:

 print "mesosphere"

else:

 if height > 20:

 print "stratosphere"

 else:

 print "troposphere"

0 10 20 30 40 50 60 70 80 90 100

troposphere stratosphere mesosphere space
km
above
earth

30

Version 3 (Best)
if height > 100:

 print "space"

elif height > 50:

 print "mesosphere"

elif height > 20:

 print "stratosphere"

else:

 print "troposphere"

ONE of the print statements is guaranteed to execute:
 whichever condition it encounters first that is true

0 10 20 30 40 50 60 70 80 90 100

troposphere stratosphere mesosphere space
km
above
earth

31

Order Matters
version 3

if height > 100:

 print "space"

elif height > 50:

 print "mesosphere"

elif height > 20:

 print "stratosphere"

else:

 print "troposphere"

broken version 3

if height > 20:

 print "stratosphere"

elif height > 50:

 print "mesosphere"

elif height > 100:

 print "space"

else:

 print "troposphere"

Try height = 72 on both versions, what happens?

0 10 20 30 40 50 60 70 80 90 100

troposphere stratosphere mesosphere space
km
above
earth

32

Incomplete Version 3
incomplete version 3

if height > 100:

 print "space"

elif height > 50:

 print "mesosphere"

elif height > 20:

 print "stratosphere"

In this case it is possible that nothing is printed at all, when?

0 10 20 30 40 50 60 70 80 90 100

troposphere stratosphere mesosphere space
km
above
earth

33

What Happens Here?
height is in km

if height > 100:

 print "space"

if height > 50:

 print "mesosphere"

if height > 20:

 print "stratosphere"

else:

 print "troposphere"

Try height = 72

0 10 20 30 40 50 60 70 80 90 100

troposphere stratosphere mesosphere space
km
above
earth

34

The then clause or the else clause
is executed

speed = 54

limit = 55

if speed <= limit:

 print "Good job!"

else:

 print "You owe $", speed/fine

35

What if we change speed to 64?

