
1

Name: ________Sample Solution_______________

Email address (UW NetID): _____________________________________

CSE 160 Winter 2016: Midterm Exam

(closed book, closed notes, no calculators)

Instructions: This exam is closed book, closed notes. You have 50 minutes to complete it. It contains 11

questions and 10 pages (including this one), totaling 90 points. Before you start, please check your copy to

make sure it is complete. After the 10 pages of the exam, there is a syntax cheat sheet that you may

remove. Turn in all 10 pages of the exam, together, when you are finished. When time has been called you

must put down your pencil and stop writing. Points will be deducted from your score if you are writing

after time has been called.

Good Luck! Total: 90 points. Time: 50 minutes.

Problem Points Possible

1 6

2 4

3 5

4 12

5 8

6 4

7 4

8 12

9 12

10 12

11 11

Total 90

2

1) [6 pts] For each of the if statements below, write the output when x = 15, x = 45, and x = 60 in

the table below:

a)

if x < 30:

 print "line 1"

elif x < 60:

 print "line 2"

else:

 print "line 3"

b)

if x < 30:

 print "line 1"

if x < 60:

 print "line 2"

else:

 print "line 3"

X = 15 X = 45 X = 60

Code a)
line 1 line 2 line 3

Code b)

line 1

line 2

line 2 line 3

2) [4 pts] Write the output of the code below in the box here:

sum = 0

for x in range(1, 5):

 for y in range(x):

 sum = sum + y

print 'sum:', sum

MY ANSWER:

sum: 10

3

3) [5 pts] The following function is supposed to take a list, and shift each element to the left by

one location. The first element in the list should be placed at the last position of the list. For

example, the list: [1, 5, 4, 6, 8, 7] should become: [5, 4, 6, 8, 7, 1]

def shift_one(lst):

 # Assumes lst contains at least one element.

 temp = lst[0]

 for i in range(0, len(lst) - 1):

 lst[i] = lst[i + 1]

 lst[len(lst)-1] = temp

 return lst

However there is a bug in the code. You should:

a) Identify and describe in plain English the bug

b) Modify the code above such that it does what is expected.

MY ANSWER:

a) The last element in the list is not set to contain the first element in the original list (it

still holds its original value).

b) Show your modifications in the code above.

Note the entire function body above could also be replaced with these two lines:

 lst.append(lst.pop(0))

 return lst

4

4) [12 pts] Suppose we have the following list:

mystery = [[8], 4, [1, 5, 3, [2, 6]], [9, 7], 7]

Write the result of the following expressions. If an error is thrown, briefly describe the error.

a) mystery[1] 4

b) mystery[0] [8]

c) [8] in mystery True

d) 8 in mystery False

e) mystery[2][1] 5

f) mystery[4][0] TypeError: 'int' object has no

attribute '__getitem__'

g) mystery[-1] 7

h) mystery[2:3] [[1, 5, 3, [2, 6]]]

i) Write code that modifies the original mystery list so that it contains the following

(change in bold):

mystery = [[8], 4, [1, 5, 3, [2, 6], 9], [9, 7], 7]

mystery[2].append(9)

OR

x = mystery[2] OR mystery[2].insert(4, 9)

x.append(9)

j) Write code that modifies the original mystery list so that it contains the following
(change in bold):

mystery = [[8], 0, [1, 5, 3, [2, 6]], [9, 7], 7]

mystery[1] = 0

OR

mystery.remove(4) OR mystery.pop(1)

mystery.insert(1, 0) mystery.insert(1, 0)

5

5) [8 pts] For the following snippets of code indicate the first error it produces and give the line

number of the error. If there is no error, state that. If there is more than one error, identify the

first error that would be encountered. Assume each snippet of code is executed independently.

Possible Errors: (each may be used more than once)
 - KeyError
 - AssertError
 - NameError
 - TypeError
 - IndentationError
 - SyntaxError

a)

1 my_dict = {'a': 4, 'b': 5, 'd': 7}

2 my_dict['a'] = "red"

3 print my_dict['c']

b)

1 for i in range(19):

2 if i % 2 == 0:

3 print 'even'

4 else:

5 print 'odd'

6 assert(i % 2 == 0)

c)

1 lst = [3, 5, 2]

2 print "length " + len(lst)

3 assert(len(lst) == 3)

d)

1 my_list = [1, 2, 3]

2 if 4 not in my_list:

3 the_list.append(4)

4 assert(4 in my_list)

d) Error: NameError

Line number: 3

c) Error: TypeError

Line number: 2

b) Error: IndentationError

Line number: 3

a) Error: KeyError

Line number: 3

6

6) [4 pts] What output is produced after running the following piece of code?

a = [3, 1, 5]

b = a

c = b[:]

d = list(a)

a.append(9)

b.append(2)

c.append(6)

d.append(5)

print a

print b

print c

print d

MY ANSWER:

[3, 1, 5, 9, 2]

[3, 1, 5, 9, 2]

[3, 1, 5, 6]

[3, 1, 5, 5]

7) [4 pts] What output is produced after running the following piece of code?

from operator import itemgetter

levels = [('Ann', 4), ('Jenny', 5),('Greg', 3),

('Gray', 3), ('Sam', 5)]

print sorted(levels, key=itemgetter(1), reverse=True)

MY ANSWER:

[('Jenny', 5), ('Sam', 5), ('Ann', 4), ('Greg', 3), ('Gray', 3)]

7

8) [12 pts] Write a function called create_recip_dict that takes no arguments and returns

a dictionary that maps the integers 1 to 100 to their reciprocal as a string. For example the

resulting commands in the interpreter should produce the output as shown:

>>> recip_dict = create_recip_dict()

>>> recip_dict[0]

(Error)

>>> recip_dict[1]

'1/1'

>>> recip_dict[2]

'1/2'

>>> recip_dict[100]

'1/100'

>>> recip_dict[101]

(Error)

MY ANSWER:

def create_recip_dict ():

 # Your code here

 new_dict = {}

 for i in range(1, 101):

 new_dict[i] = '1/' + str(i)

 return new_dict

8

9) [12 points] Write a function called word_lengths that takes a string argument as input.

Assume the string has already been stripped of all punctuation and converted to lowercase. The

function should split the string into individual words and return a dictionary mapping the

number of letters in a word to a set of words of that length that appeared in the string. For

example:

print word_lengths("this is a cool string eh")

Would print something like this:

{1: set(['a']), 4: set(['this', 'cool']), 2: set(['is', 'eh']), 6: set(['string'])}

MY ANSWER:

def word_lengths(input_string):

 # Assumes input_string contains at least one letter.

 words = input_string.split(' ')

 # Your code here

 len_dict = {}

 for word in words:

 word_len = len(word)

 if word_len in len_dict.keys():

 len_dict[word_len].add(word)

 else:

 len_dict[word_len] = set([word])

 return len_dict

9

10) [12 points] Write a function called find_common_sets that takes two lists of sets as

arguments. Assume the two lists are of equal length but the sets they contain may differ. The

function should return a list containing the intersections of the two sets in the corresponding

positions of each list. For example:

list_a = [{1}, {3, 4, 5}, {1, 2}]

list_b = [{3}, {3, 5, 6}, {2}]

print find_common_sets(list_a, list_b)

Would print something like this:

 [set([]), set([3, 5]), set([2])]

MY ANSWER:

def find_common_sets(lst_one, lst_two):

 # Assumes lst_one and lst_two contain at least one set each.

 # Your code here

 intersect_list = []

 for i in range(len(lst_one)):

 intersect_list.append(lst_one[i] & lst_two[i])

 return intersect_list

10

11) [11 pts] a) Draw the entire environment, including all active environment frames and all

user-defined values, at the moment that the MINUS OPERATION IS performed. Feel free to

draw out the entire environment, but be sure to CLEARLY indicate what will exist at the moment

the MINUS operation is performed (e.g. cross out frames that no longer exist).

b) When finished executing, what is printed out by this code?

c) How many different stack frames (environment frames) are active when the call stack is

DEEPEST/LARGEST? (Hint: The global frame counts as one frame.)

__

x = 10

def happy(y):

 return fuzzy(fuzzy(y)) - y

def fuzzy(z):

 return z + 3

def sunny(x):

 val = fuzzy(x)

 return happy(val) + val

print sunny(x)

MY ANSWER:

MY ANSWER: 4

MY ANSWER: 19

