
1

Name: ___Sample Solution_____________________

Email address (UW NetID): _____________________________________

CSE 160 Winter 2016: Final Exam

 (closed book, closed notes, no calculators)

Instructions: This exam is closed book, closed notes. You have 50 minutes to complete it. It contains 7

questions and 8 pages (including this one), totaling 70 points. Before you start, please check your copy to

make sure it is complete. After the 8 pages of the exam, there is a syntax cheat sheet that you may remove.

Turn in all 8 pages of the exam, together, when you are finished. When time has been called you must put

down your pencil and stop writing. Points will be deducted from your score if you are writing after

time has been called.

Total: 70 points. Time: 50 minutes.

Problem Max Points Score

1 4

2 3

3 4

4 14

5 20

6 15

7 10

Total 70

2

1) [4 pts]

a) Give two examples of a mutable type:

list, dictionary, set

b) Give two examples of an immutable type:

int, float, string, tuple, boolean

2) [3 pts] Write code that would produce an "IndexError" error

lst = [1, 2, 3]

print lst[3]

3) [4 pts] Write the output of the code below in the box here:

sum = 0

for x in range(2, 8):

 if x % 2 == 0:

 for y in range(x):

 sum = sum + y

print 'sum:', sum

MY ANSWER:

 sum: 22

3

4) [14 pts] Given a list of lists of integers, fill in the function index_of_max_unique below to

return the index indicating which sub-list has the most unique values. For example:

index_of_max_unique([[1, 3, 3], [12, 4, 12, 7, 4, 4], [41, 2, 4, 7, 1, 12]])

would return 2 since the sub-list at index 2 has the most unique values in it (6 unique values).

index_of_max_unique([[4, 5], [12]]) would return 0 since the sub-list at index 0 has the

most unique values in it (2 unique values).

You can assume that neither the list_of_lists nor any of its sub-lists will be empty. If

there is a tie for the max number of unique values between two sub-lists, return the index of the

first sub-list encountered (when reading left to right) that has the most unique values.

def index_of_max_unique(list_of_lists):

 # Your code here

 max_index = 0

 max_unique = 0

 for index in range(len(list_of_lists)):

 num_unique = len(set(list_of_lists[index]))

 if num_unique > max_unique:

 max_unique = num_unique

 max_index = index

 return max_index

4

5) [20 pts total] a) [10 pts] Write a function called read_zoo_animals(filename) that takes
the name of a file as a parameter. You can assume that the given file contains lines of the form:

zoo_name animal where each zoo_name and animal are strings that contain no spaces
or punctuation and are separated by a single space. Here are the contents of a sample input file:

point_defiance monkey

national panda

woodland_park bear

national elephant

national panda

Your function should read in the given file and return a dictionary mapping each zoo_name to

a list of the animals the zoo has. For a given zoo, the animals in that zoo’s list should appear in

the order they appear in the file. It is o.k. to have duplicate animals in the list for a given zoo.

You may assume the file name provided is valid and that the file is formatted as described and

includes at least one zoo_name animal pair. Calling read_zoo_animals on the file

above would return this dictionary: {'point_defiance': ['monkey'],
 'national': ['panda', 'elephant', 'panda'],

 'woodland_park': ['bear']}

def read_zoo_animals(filename):

 # Your code here

 result = {}

 input = open(filename)

 for line in input:

 items = line.split()

 zoo = items[0]

 animal = items[1]

 if zoo in result:

 result[zoo].append(animal)

 else:

 result[zoo] = [animal]

 input.close()

 return result

5

5) (cont.) b) [10 pts] Write code in the main function that will call the read_zoo_animals
function written in part a) to open a file called “local_zoos.txt” and print the results in
EXACTLY the following format. For the sample input shown in problem 5a) the output would be:

point_defiance:

 monkey

national:

 elephant

 panda

 panda

woodland_park:

 bear

zoo_names may be printed in any order, but each zoo’s list of animals should be printed in

alphabetical order. Don’t forget the colon at the end of each zoo_name and a single space at
the beginning of each animal indenting it.

def main():

 # Your code here

 zoo_dict = read_zoo_animals("favorite_zoos.txt")

 for zoo in zoo_dict:

 print zoo + ":"

 sorted_animals = sorted(zoo_dict[zoo])

 for animal in sorted_animals:

 print " " + animal

6

6) [15 pts] Note: THIS PROBLEM IS NOT RELATED TO PROBLEM 5!!

You are given the following class definition:

class Zoo:

 def __init__(self, zoo_name):

 '''zoo_name: a string representing name of zoo'''

 self.name = zoo_name

 self.animals = []

 def add(self, animal):

 '''animal: a string representing an animal'''

 self.animals.append(animal)

a) Write the code for the method below that is also a part of the class Zoo:

 def release_animal(self, free_animal):

 '''Remove all occurrences of free_animal from this zoo.

 free_animal: a string representing an animal.

 Returns the number of occurrences that were removed.

 The free_animal string must match exactly (e.g. same

 case) with the name of an animal currently in the zoo

 in order for that animal to be removed. '''

 # Your code here

 occurrences = self.animals.count(free_animal)

 for occurrence in range(occurrences):

 self.animals.remove(free_animal)

 return occurrences

7

6) (continued)

b) Write the code for the method below that is also a part of the class Zoo:

 def get_num_animals(self):

 '''Returns the total number of animals in the zoo as an

 integer.'''

 # Your code here:

 return len(self.animals)

c) Write code in the main function to add a lion and a tiger to the seattle_zoo. This code is

outside of the class Zoo.

def main():

 seattle_zoo = Zoo("woodland_park")

 # Your code here:

 seattle_zoo.add(“lion”)

 seattle_zoo.add(“tiger”)

d) Describe a change to the Zoo class that might cause a client of the Zoo class to have to

modify its code.

Changing name of methods or class, number of parameters or expected type of parameters or

return type of methods. Removing a method from the class. Any change to the interface the

client may be using.

e) Describe a change to the Zoo class that would NOT cause a client of the Zoo class to have to

modify its code.

Changing HOW a method is implemented, or the name of a parameter. Changing the internal

representation of the animals belonging to the zoo (say from a list to a dictionary). Adding a

new method.

8

7) [10 pts] a) Draw the entire environment, including all active environment frames and all user-

defined variables, at the moment that the MINUS OPERATION IS performed. Feel free to draw

out the entire environment, but be sure to CLEARLY indicate what will exist at the moment the

MINUS operation is performed (e.g. cross out frames that no longer exist).

b) When finished executing, what is printed out by this code? MY ANSWER:

c) How many different stack frames (environment frames) are active when the call stack is

DEEPEST/LARGEST? (Hint: The global frame counts as one frame.) MY ANSWER:

__

def smile(x):

 return x + 4

def funny(x):

 y = smile(smile(x))

 return y + smile(x)

def spring(y):

 x = smile(y)

 return funny(x - y) ****Draw the environment at this point****

x = 7

y = 100

print spring(smile(x)) + y

4

120

After the minus is executed, spring

calls funny, then funny calls

smile three times in a row, resulting

in a depth of 4 stack frames at the

point we are inside any one of those

three calls to smile.

