
1 
 

Name: ___ Sample Solution ____________________ 

Email address (UW NetID): _____________________________________ 

 

CSE 160 Spring 2015: Final Exam 
 

(closed book, closed notes, no calculators) 

 

Instructions: This exam is closed book, closed notes. You have 50 minutes to complete it. It contains 7 

questions and 9 pages (including this one), totaling 68 points. Before you start, please check your copy to 

make sure it is complete. Turn in all pages, together, when you are finished. Please write neatly; we cannot 

give credit for what we cannot read. 

Good Luck! 

Total:  68 points. Time: 50 minutes. 

Problem Max Points Score 

1 5  

2 3  

3 10  

4 6  

5  24  

6 10  

7 10  

Total 68  

  



2 
 

1) [5 pts] You receive the following error messages after running your code: 

Traceback (most recent call last): 

  File "social_network.py", line 338, in <module> 

    do_stuff(friends_list) 

  File "social_network.py", line 200, in do_stuff 

    result = recommend_by_influence(friendlist) 

  File "social_network.py", line 107, in recommend_by_influence 

    output = read_result() 

NameError: global name 'read_result' is not defined  

 

a) List the names of the stack frames that existed at the point the error was discovered. 

 

Global,  do_stuff,  recommend_by_influence 

 

 

b) What is the most recent stack frame (e.g. the last function we successfully called)? 

 

recommend_by_influence 

 

c) Describe how you would go about trying to find the cause of and fix this error. 

Most likely this is due to a misspelling of the function name referred to as “read_result()” on 

line 107 of social_network.py.  So a good start would be to search to see if there is a similarly 

named function in the file social_network.py.  If that fails, maybe this function is defined in 

another namespace like we did before with Random or nx, requiring the function name to be 

prefaced with that module name. 

2) [3 pts] Write code that would produce a "KeyError: " error 

temp_dict = {2:"foo", 5:"bar"} 

print temp_dict[3] 

Traceback (most recent call last): 

  File "<pyshell#3>", line 1, in <module> 

    print temp_dict[3] 

KeyError: 3  



3 
 

3) [10 pts] a) Given the function sum_roll() which returns the sum of two random 6-sided 
dice rolls, complete the following function to create a dictionary of sum frequencies. The 
dictionary should contain an entry for every possible sum of two dice. For example, 
freq_of_sums(5) might return:  
{2:1, 3:0, 4:0, 5:1, 6:0, 7:2, 8:0, 9:0, 10:1, 11:0, 12:0} 

def freq_of_sums(n=10): 

''' Rolls two 6-sided dice n times and records the sum of 

each pair. Assumes n is a positive integer. Returns a 

dictionary mapping the sums to the number of times in n rolls 

that sum was rolled.''' 

# Your code here 

    # One solution, others possible. 

    # Also fine to use a loop for initializing the dictionary 

    freq_dict = {i:0 for i in range(2, 13)} 

    for roll in range(n): 

        dice_sum = sum_roll() 

        freq_dict[dice_sum] += 1 

    return freq_dict 

 

b) Describe in a couple of sentences your approach to testing this function.  

Here are a couple of specific assert statements you could use: 

n = 20 

assert (sum(freq_of_sums(n).values()) == n) 

assert len(freq_of_sums(n)) == 11 

There is no need to test for values of n=0 or negative, or for n as a string or float, as that 
behavior is not specified in the docstring – the function can do whatever it wants there.  

A couple of folks suggested running for very large numbers of n and seeing if the distribution 
approached the uniform distribution which might catch some egregious errors but otherwise 
is hard to use to check exact correctness.  You could also create your own version of the 
function sum_roll and have it return a set of known values, such that you would know 

exactly what the distribution would be. 

 

  



4 
 

4) [6 pts] a) Write a docstring for the following function. Document the inputs and any outputs 

or side effects (meaning, what else does the function do?).  

import matplotlib.pyplot as plt 

def my_plot(slope, x_points): 

    """Your docstring here.""" 

    y_points = [] 

    for x in x_points: 

        y_points.append(x**slope) 

    plt.clf() 

    plt.plot(x_points, y_points) 

    plt.show()  

 

MY ANSWER: 

''' Displays a plot of x**slope for all x_points. 

 

Inputs:  

    slope: a number that will be used as the exponent of each 

        value in x_points 

    x_points: a list of numbers 

 

Outputs: None 

 

Side effects: 

    Clears any previous matplotlib graph before plotting. 

    Displays a graph of x vs. x**slope for all x in x_points. 

''' 

 

b) Add one line of code to my_plot that would save the resulting figure as “using_val.png”, 

where val is whatever value is stored in the variable slope. Draw arrows in the code above to 
show where you would add your line of code, be exact! 

plt.savefig("using_" + str(slope) +".png") 

This line should be inserted after the call to plot and BEFORE the call to show. 



5 
 

5) [24 pts] For this problem you should write code in good style (as if you were submitting it for 

a homework assignment) and you should use functions defined in earlier parts of the problem 

if applicable. 

You have a data structure which is a list of dictionaries as follows: 

    cities = [ 
        {'Name':'Vancouver','State':'WA','Population':161791}, 

        {'Name':'Salem','State':'OR','Population':154637}, 

        {'Name':'Seattle','State':'WA','Population':608660}, 

        {'Name':'Spokane','State':'WA','Population':208916}, 

        {'Name':'Portland','State':'OR','Population':583776}, 

        {'Name':'Bellingham','State':'WA','Population':80885}, 

        . . . 

       ] 

a) Complete the function max_in_state to return the city (as a dictionary) with the highest 

population in a given state. If cities contained only the dictionaries above, a call to           

max_in_state(cities, 'WA') would return: 

 {'Name':'Seattle','State':'WA','Population':608660} 

def max_in_state(city_list, state): 

  '''Return the dictionary for the city in city_list with the 

  largest population for the given state.  Return None if there 

  are no cities for the given state in city_list.''' 

 

  

  max_city = None 

  for city in city_list: 

    if city['State'] == state: 

      if max_city == None or city['Population'] > max_city['Population']: 

        max_city = city 

  return max_city 

 



6 
 

5) b) Complete the following function to return the total population for a given state.  (Assume 

that all census locations for a state are included in the cities list). If cities contained only the 
following dictionaries: 
 
  cities = [ 
        {'Name':'Seattle','State':'WA','Population':50}, 

        {'Name':'Portland','State':'OR','Population':10}, 

        {'Name':'Spokane','State':'WA','Population':20}, 

        {'Name':'Vancouver','State':'WA','Population':7}, 

       ] 

a call to           state_population(cities, 'WA') would return:  77 

 

def state_population(city_list, state): 

    '''Return a number representing the total population of the 

    given state based on the list of cities provided. Return None 

    if there are no cities for the given state in city_list.''' 

 

    total_pop = None 

    for city in city_list: 

        if city['State'] == state: 

            if total_pop == None: 

                total_pop = 0 

            total_pop += city['Population'] 

    return total_pop 

 

 

 

  



7 
 

5) c) Complete the following function to return a dictionary mapping state to the total 

population for that state.  (Assume that all census locations for a state are included in the cities 

list)  If cities contained only the dictionaries shown in part b, a call to  

all_state_populations(cities) would return:   

{'WA':77, 'OR':10} 

 

def all_state_populations(city_list): 

  '''Returns a dictionary mapping state to total population  

  for each state in city_list. Returns an empty dictionary if 

  city_list is empty.''' 

 

  state_set = set() 

  for city in city_list: 

      state_set.add(city['State']) 

  # OR state_set = {city['State'] for city in city_list} 

  all_states_dict = {} 

  for state in state_set: 

      all_states_dict[state] = state_population(city_list, state) 

  # OR all_states_dict = {state: state_population(city_list, state)  
  #                                            for state in state_set} 

  return all_states_dict 

  



8 
 

6) [10 pts] You are given the following class definition: 

class Car: 

    def __init__(self, gas_tank_size, miles_per_gallon): 

        ''' gas_tank_size and gas is in gallons ''' 

        self.gas = 0.0 

        self.tank_size = gas_tank_size 

        self.mpg = miles_per_gallon 

 

    def refill_tank(self): 

        '''Fills gas tank up to the tank size. 

        tank_size and gas are in gallons.''' 

        self.gas = self.tank_size 

 

a) Fill in the code for the function below that is also a part of the class Car. 

    def drive(self, miles): 

        '''Drives the car the provided number of miles. 

        Will deduct the required gas from the tank of the car. 

        If there is not enough gas just print "Not enough gas!" 

        and will not drive or deduct the gas.''' 

        # Your code here 

 

        gas_needed = float(miles) / self.mpg 

        if gas_needed <= self.gas: 

            self.gas = self.gas - gas_needed 

        else: 

            print "Not enough gas!" 

 

b) Add code below to use the method that you wrote to drive nicks_car 16 miles. 

nicks_car = Car(15, 30) 

nicks_car.refill_tank() 

# your code here: 

 

nicks_car.drive(16) 

 

c) List one advantage of using a class 

 

Many possible answers.  Collects the data representation and functions operating on 

that data in one place.  Allows the implementer of the Car class to change the internal 

implementation while the client code can remain unchanged.   

  



9 
 

7) [10 pts] a) Draw the entire environment, including all active environment frames and all user-

defined variables, at the moment that the MINUS OPERATION IS performed. Feel free to draw 

out the entire environment, but be sure to CLEARLY indicate what will exist at the moment the 

MINUS operation is performed (e.g. cross out frames that no longer exist). 

b) When finished executing, what is printed out by this code?          MY ANSWER:   

c) How many different stack frames (environment frames) are active when the call stack is 

DEEPEST/LARGEST? (Hint: The global frame counts as one frame.)       MY ANSWER:   

____________________________________________________________ 

def sun(x): 

    return x + 2 

 

def water(x): 

    y = sun(sun(x)) 

    return y - sun(x) 

 

def summer(y): 

    x = sun(y)  

    return water(x * 10) 

 

x = 7 

print summer(sun(x)) 

 

2 

4 


