

CSE 154: Web Programming Summer 2019

Exam 2: Problem Reference Booklet

This is the Exam Reference Booklet for the following Problems.

 You will not get any credit for written work in this booklet.

● Problems 2/3 (Client/Server JS) Books on a Budget

● Overview

● Project Directory and <course.txt> File Details

● Textbook API Documentation

● Problem 4 (SQL): Who needs .txt-books anyways?

● booksdb database overview

Problem 2/3 Overview

With textbook prices on the rise, the team that brought you Tricky
Typing has begun work on their next big project: a full-stack website
designed to help you find the cheapest available textbooks for your
courses.

In Problem 2, you will write the server-side app.js in Node/Express to
implement the API following a provided specification. This API will then
be used in Problem 3 (client-side books.js) to power the textbook
search page (books.html). For both problems, you may assume the
other is implemented correctly, and may choose to implement them in
either order. On the rest of this page and the following page, we
provide the Project Directory Structure as well as the reference API
documentation. You will then find instructions for Problems 2/3.

Project Directory Structure
For both problems, you should assume the following directory structure, where the front-end views are served
from public/ similar to the other full-stack projects you’ve worked on in Modules 4/5.

Each course has exactly one .txt file in the data directory, named in the format <course>.txt with the first line
being the full name of the required textbook and all following lines having the format seller:price to pair
each seller known offering that textbook with their offered price (not assumed to be in any particular order). In
this version of our API, we assume all courses in the data directly have only one textbook required.

Directory structure
book-finder/

└─ app.js

 data/

 └─ CSE142.txt

 CSE154.txt

 HCDE308.txt

 PSYCH200.txt

 ...

 public/

 └─ books.html

 books.js

 styles.css

<course.txt> File Content Format
bookname

seller1:price1

…

sellerN:priceN

Example CSE154.txt contents
A Dog's Guide to Web Programming

University Book Store:199.99

PetCo:200.01

Example HCDE308.txt contents
Design of Everyday Things

amazon:10.43

Example PSYCH200.txt contents
Psychology of Dogs

PetCo:19.99

Real Penny Dealz:0.01

For each <course>.txt file, you should assume:
● The only occurrence of : is between the seller name and their price for the book. Use this delimiter to

split each line string into an array of two strings.
● There are no duplicate sellers in the same file.
● All prices are formatted non-negative numbers with exactly 2 digits after the decimal. A price less than

$1.00 will always have a single 0 before the decimal.

Textbooks API Documentation

The textbooks API will be implemented in app.js and supports two GET requests - one returning plain text data,
and one returning JSON data. All specified errors are sent as plain text, and any file- or directory- processing
error should return a 500 error status with the message “Something went wrong on the server, please try again
later.” Other specific details for each GET request are described below:

Endpoint 1: Get all Course Names
Request Format: GET /courses
Response Content Type: plain text
Description: Outputs a plain text response with each course’s name on a new line. The last line in the response
should not end with the \n character (these are hidden characters, but are shown in bold in the example output
for clarification):
Example Output: Below is the expected output according to a data directory that happens to have only 4
course txt files (but you should not assume these are always the same):

CSE142\n
CSE154\n
HCDE308\n
PSYCH200

Endpoint 2: Get the Cheapest Textbook for a Given Course
Request Format: GET /books/:course
Response Content Type: JSON
Description: Outputs a JSON response providing information on the cheapest available option for the course
passed, where the :course value corresponds to a course name returned in Endpoint 1. The response should
include the name of the course’s required textbook, the seller offering the cheapest option, and their offered
price.
Example Request: /books/CSE154
Example Response:

{

 “name”: “A Dog’s Guide to Web Development”,

 “seller”: “University Book Store”,

 “price”: 199.99

}

Error-Handling: If a user attempts to lookup a course that does not correspond to a txt file in data, this endpoint
should return a 400 plain text error with the message, “No data found for course.”

2. (Node.js) Books on a Budget
You will implement the two endpoints as Part A and Part B, completing the rest of the app.js provided in the
Answer Booklet.

Finish app.js as specified in the Problem 2 section of the Exam 2 Answer Book.

3. (Client-side JS with AJAX)
What’s an API without an interface? In this Problem, you will implement the client-side books.js to fetch from the
textbooks API from Problem 2.

Provided Screenshots:

Figure 1: When page is loaded, after course
buttons are populated on the page (retrieved
from /courses endpoint)

Figure 2: After clicking the CSE154 button and populating
the book info area.

Initial Page Behavior
When the page loads, you should make a GET request to the /courses endpoint. Recall that this endpoint will
return a list of all available courses as newline-separated text. Use this response create and append a button
element for each course to #courses with textContent being the course name.

Viewing the Cheapest Textbook for a Course
When a course button is clicked, a fetch call should be made to /books/:course, with the respective course
name passed as the :course path parameter. Recall that this endpoint will return the cheapest book as a JSON
object, shown below. Use this information to populate #book-name, #seller, and #price. The .hidden class
should be removed from #book-info on success.
Example response from /books/CSE154:

{

 “name”: “A Dog’s Guide to Web Development”,

 “seller”: “University Bookstore”,

 “price”: 199.99

}

If an error is thrown during any fetch request to the API, #book-info and #courses should be hidden and
#error-info should be made visible. Remember that you may assume checkStatus is provided with the rest
of the id, qs, qsa, and gen helper functions. These are included in the cheatsheet for reference if needed.

Provided books.html:

<!DOCTYPE html>

<html lang="en">
 <head>
 <script src="books.js"></script>
 <link href="styles.css" rel="stylesheet" />
 </head>
 <body>
 <h1>Book Finder</h1>

 <p id="error-info" class="hidden">An error has occurred. Please refresh the page.</p>

 <div id="book-info" class="hidden">
 <h2 id="book-name"></h2>
 <p>
 Available at
 for $
 </p>
 </div>
 <h2>Select a course:</h2>
 <div id="courses">
 <!-- A button for each course retrieved from the API should be added here -->

 </div>
 </body>
</html>

Finish books.js as specified in the Problem 3 section of the Exam 2 Answer Book.

4. (SQL) Who needs .txt-books anyways?

With the growth of their project, the Textbook Search team has decided to convert their .txt files into a MySQL
database called booksdb. With this transition the team has expanded the capabilities of their service, enabling
users to find cheap textbooks like never before.

With this improved SQL-powered service, we can expand the scope of our textbook search - this table
breakdown is similar to the directory and file structure you used in Problems 2/3, but now supports courses with
multiple required books.

The new textbook database consists of three tables (not all data shown):

books
The books table contains information for all textbooks on the service, including the name and author. The id
column is a primary key.

offers
The offers table associates textbooks with their sellers, as well as the price offered by that seller. The offer_id
column is a primary key, and the book_id column references the books table PRIMARY KEY.

requirements
The requirements table associates course names with their required textbooks. Remember that unlike the
constraint in our <course>.txt files in Problems 2/3, our table now allows each course to have multiple
book_ids (e.g. CSE154 has 4 books in the requirements table). The book_id column references the books
table PRIMARY KEY.

