

CSE 154: Web Programming Autumn 2018
Final Exam

Name: __

UWNet ID: __@uw.edu

TA (or section): __

Rules:

● You have 110 minutes to complete this exam.
● Do not open this booklet until time has begun. You will receive a deduction if you open the booklet

before time is started, or if you keep working after the instructors call for papers.
● You may not use any electronic or computing devices, including calculators, cell phones, smartwatches,

and music players.
● Unless otherwise indicated, your code will be graded on proper behavior/output, not on style.
● Do not abbreviate code, such as writing ditto marks (””) or dot-dot-dot marks (...).
● The only functions you may assume are defined are $ (for document.getElementById),

qs (for document.querySelector), qsa (for document.querySelectorAll), and checkStatus .
● You must show your Student ID to a TA or instructor while sitting in your assigned seat in order to

have received this exam.
● Once you enter the room, you must turn all parts of the exam with your name on it and will not be

permitted to leave without doing so.
● There is an extra piece of paper stapled to the back of this exam. If you continue problem, please make

sure to note which problem you are continuing back there
● It is your responsibility to ensure your exam is stapled back together and/or your name is on every page

if you choose to pull the staple out of this booklet.

Question Score Possible

HTML/CSS 15

Short Answer 18

JS/DOM/Animations 12

JS with AJAX 20

PHP Web Service 20

SQL Queries 15

Extra Credit 1

This page intentionally left blank

2

1.A. Debug * the Things! (CSS Query Selectors, 5pts)
Consider the following HTML body:

<body>

 <header id="title-1">
 <h1 id="title-2">How to Debug <strong id="strong-1">'em All!</h1>
 </header>
 <main>
 <h2 id="title-2">Tips:</h2>
 <ul id="list-1">
 <li id="tip-1">
 <strong id="strong-2">Never underestimate the subtle semicolon...

 <li id="tip-2">The JS console is your best friend!
 <li id="tip-3">Talk through your code with a swaggy rubber duck
 <li id="tip-4" class="fun">
 Sometimes, you just need to take a break from code...

 <ol id="list-2" class="fun">
 <li id="sub-1">Pet a puppy
 <li id="sub-2">Solve a puzzle
 <li id="sub-3">Take a nap <strong id="strong-3">with a puppy

 <p id="p-1">

 </p>
 </main>
</body>

Write the ID’s of the elements selected by each of the given selectors:

1. ul strong

__

2. .fun

__

3. li li

__

4. ul > li

__

5. li > *

__

3

1.B. Take a Set Before You Go. (CSS Writing, 10pts)

The above screenshot can be created by adding CSS to the following HTML:

<body>

 <h1>Set!</h1>

 <div class="row">
 <div class="card">

 </div>

 <div class="card">

 </div>

 <div class="card">

 </div>

 </div>

</body>

Write the CSS to add styles to this HTML to meet the expected output with the following appearance details.
Remember to set flex properties to meet the screenshot output:

● Card positioning:
○ The horizontal spacing for the three cards is achieved by setting the appropriate flex property in

the appropriate CSS selector to the space-between value.
● Card details:

○ The divs containing card images are each 200px wide and 75px tall with a solid black border of
0.35em width and a border radius of 15px.

○ The horizontal spacing for the images in each individual card is achieved by setting the
appropriate flex property in the appropriate CSS selector to the space-around value.

○ All images should have a specified height of 60px and be vertically centered in each card.
● Heading:

○ The Set! heading is Helvetica font with a default of sans-serif and is centered on the page with
5px of spacing between the text and the top border of the cards

Complete your answer on the next page.

4

Write your answer to Problem 1.B. here.

5

2. Short Answers (18 points)
1. HTML/CSS. Consider the following HTML used to render a styled paragraph on a webpage:

<div class=”paragraph”>
 Welcome to our cookie store!
 You will never, <i>ever</i>, <u>EVER</u> beat
 OUR recipes!
</div>

a. What is one issue with this HTML based on what we’ve learned in Module 1 (HTML/CSS)? (1pt)

b. Describe 1 specific change you would make to improve the provided HTML. (1pt)

2. JavaScript/CSS. While we have discussed the benefits of using classes (e.g. .hidden) and CSS to style
elements on a page, we have also shown a few cases where it is better to set the style of an element using
element.style.<property> in JavaScript. Give an example of such a case. (1pt)

3. Asynchronous Requests. Consider a single function that makes multiple requests to different web services
in JavaScript. Assuming each request does not depend on a response of another request, what is the benefit of
these requests being made asynchronously (all at once) vs. synchronously (one after another)? (1pt)

6

4. Event Listeners. Consider the following JS program:

(function() {
 "use strict";
 window.addEventListener("load", initialize);

 function initialize() {
 $("my-btn").addEventListener("click", foo);
 $("my-btn").addEventListener("click", bar);
 $("my-other-btn").addEventListener("click", bar);
 }

 function foo() {
 console.log("Hello!");
 $("my-btn").removeEventListener("click", foo);
 }

 function bar() {
 console.log("Hi!");
 }
})();

Assuming the #my-btn and #my-other-btn buttons exist in the corresponding HTML, circle which of the four
options would be correct console output for the following sequence of events: (1pt)

1. A user clicks the #my-btn button
2. A user clicks the #my-other-btn button
3. A user clicks the #my-btn button

a b c d

Hello!

Hi!

Hi!

Hello!

Hi!

Hello!

Hi!

Hi!

Hi!

Hello!

Hi!

Hello!

Hi!

Hi!

Hi!

Hi!

Hi!

Hi!

5. Data Storage Trade-Offs.

a. It is possible to store/process data on a server using .txt or .json files. What is one advantage of using SQL
databases to store data instead? (1.5pt)

b. Recall that localStorage can be used to store data on a user’s browser. What is one example where it
would be more appropriate to store data with localStorage instead of SQL?: (1.5pt)

7

6. GET vs. POST. In 2-3 sentences, identify a specific example where it is better to use a POST request instead
of a GET request and justify your choice. (2pt)

7. PDO Connections. What is the purpose of a PDO object in a PHP web service? (1pt)

8. PHP/SQL Security. Consider the following 2 options for inserting a new todo item into a todos database:
Option 1:

$db->query("INSERT INTO Todos (todo, author, type)
 VALUES ('{$todo}', '{$author}', '{$todo_type}')");

Option 2:
$str = "INSERT INTO Todos (todo, author, type)
 VALUES (:todo, :author, :todotype)";
$params = array("todo" => $todo, "author" => $author, "todotype" => $todo_type);
$stmt = $db->prepare($str);
$stmt->execute($params);

Which option is more secure? Justify your choice. (1.5pt)

8

9. Regex. For each of the two regular expressions, circle all the string(s) below that match it (2pts):
i. /^[A-Z]+4\d\d$/

● CSE431

● CSE154

● http400

● ABC4dd

● 404

ii. /^pup.*y.jpg$/

● puppy.jpg

● ^puppypuppy.jpg$

● pupy.jpg

● puppyparty.jpg

● puppykitty.JPG

Regex reference:

10. PHP FIle I/O. Suppose a directory has the following structure:
test.php
mydir/
 images/
 puppy.gif
 pupper.jpg
 doge.png
 lotsa-pups.txt

What do each of the following statements return if written in test.php? Use [] notation for any arrays and put
strings in "". (3.5pts)

Statement Return Value

scandir("mydir")

glob("mydir/all-the-puppies.txt")

glob("*/*pup*")

9

3. It’s Time for the Holidays! (JS/DOM/Timers, 12 points)

It’s the time of year when Seattle streets are filled with colorful lights! In this problem, you will create a holiday
light show simulation using what you’ve learned in CSE 154 this quarter. There are two views on the Holiday
Light Show page. Initially, the #main-view is shown and the #lights-view is hidden with the provided
hidden class.

Initial (#main-view) Page Appearance #lights-view during animation

Below is the provided HTML body your JS will be working with:

 <body>
 <header><h1>Holiday Light Show!</h1></header>
 <section id="main-view">
 <p>
 How many light strands do you want to set up?

 <input type="number" id="count" /> (max of 10)
 <button id="start-show">Start Light Show!</button>
 </p>
 <p id="error-msg" class="hidden">Please enter a value between 1 and 10 (inclusive)</p>
 </section>
 <section id="lights-view" class="hidden"></section>
 </body>

Setting up the Stage
When a user clicks the #start-show button, you’ll write JavaScript to set up a light show of vertical strands of
holiday lights based on the current input value of #count . If a value for the #count input box is missing, is less
than 1, or greater than 10, the #error-msg paragraph should be displayed by removing the hidden class (see
provided HTML).

Example of error message shown for invalid input

Otherwise (the input is between 1 and 10) each strand should be created as a div element with the class of
strand having 15 children divs, each with the class of light . Your code should assign each light its own
random background color using the provided getRandomColor() function (no background colors are
defined in lights.css).

10

After adding these lights to each strand, the strand should be added as a child to the #lights-view section.
So if a user has input “4” when clicking the #start-show button, 4 .strand div s will be created for a total of
60 .light div s. An example of this generated HTML hierarchy for #lights-show is as follows:

<section id="lights-view">
 <div class="strand">
 <div class="light"></div>
 ... 14 more lights

 </div>
 ... more strands depending on input box value

</section>

After creating and adding the strands to the #lights-view , the hidden class should be removed from this
view and added to the #main-view .

Animating the Light Show
As soon as the #lights-view is displayed, the animation should start. Every 0.5 seconds, a new random
background color should be given to each light. Below is a snapshot of an animated show, where 4 strands have
been created:

You may assume adding .strand div s to the #lights-view and .light div s to each kstrand will
result in the correct layout with provided CSS (you are not to write any CSS). You are to use the hidden class to
hide/show any elements as specified.

You will write your JS in three parts (you may complete them in any order you prefer, and you may assume the
two functions for b) and c) are correctly implemented if you call them in part a).

a) Write any page setup/initialization code.
b) Write a function to check input value and if valid, create the strands of lights and switch views.
c) Write a function to implement the light show animation.

For full credit, all of these parts must be implemented such that the program works as specified in the
previous two pages. You may assume that the aliases $(id) , qs(el) , and qsa(sel) are defined for
you and are included as appropriate.

(function() {
 "use strict";
 // provided constants
 const LIGHTS_PER_STRAND = 15;
 const INTERVAL = 500;

 window.addEventListener("load", initialize);

 // Provided getRandomColor function to use to return random hex colors for lights.
 function getRandomColor() {
 let result = "#";
 let hexValues = "0123456789ABCDEF";
 for (let i = 0; i < 6; i++) {
 result += hexValues[parseInt(Math.random() * hexValues.length)];
 }
 return result;
 }

 // Your solutions to Parts a, b, and c. will be written on the following pages.

11

 /**
 * Part a. Write the page initialization code/functions. You may assume the functions

 * from Part b. (createLights) and Part c. (startAnimation) are implemented correctly.

 */
 function initialize() {

 }

 /**
 * Part b. Write a function createLights to create strands of lights based

 * on the user input to the #count textbox. If there is not a value entered between 1

 * and 10 (inclusive) in #count, show the #error-msg paragraph. Otherwise, the

 * #lights-view should be shown and #main-view should be hidden at the end of this function.

 */
 function createLights() {

 }

12

 /**
 * Part c. Write a function startAnimation to start the light animation for

 * the created strands of lights. Assume the #main-view is hidden and #lights-view

 * is shown, and the strands with lights are already populated in #lights-view.

 */

 function startAnimation() {

 }

 // Any (optional) helper functions you write should go here.

})();

13

4. AJACKSketch (JS/AJAX, 20 points)
Jack Gunter is an eclectic artist who lives in Camano Island, WA. He has many talents: writer, filmmaker, and
antique collector, but he is most known for his distinctive style of painting. Jack paints with brush strokes of egg
tempera paints to form a rich and unique image on his canvases. We recently put together a quick website for
Jack to highlight some of his work.

Implementation Requirements

When the page is initially loaded it will look like the image on the left -
a drop down (#works-list), that that will be populated with types of
Jack’s works, and an empty section (#works). The HTML for this page
is shown below.

The HTML page will link to ajacksketch.js which contains
code you will write to add behavior to this page. The JS will
make GET requests to ajacksketch.php (the same web
service you will implement in Problem 5), to retrieve data that will
be incorporated onto the page. For the purposes of this problem
you may assume ajacksketch.php functions as expected.

The body of the provided ajacksketch.html file is provided below:

<body>
<header>

<h1>Jack Gunter, Artist</h1>
</header>
<main>

<section>
Select types of work to view:
<select id="works-list">

<option value="">(choose one)</option>
</select>

</section>
<section id="works">

<h2 id="description"></h2>
<div id="works-displayed">
</div>

</section>
</main>
<footer>

<p>All artwork copyright Jack Gunter, Camano Island, WA</p>
</footer>

</body>

14

This webpage will function as follows:

● When the page loads your JS will make the GET request ajacksketch.php?mode=works which will
return the types of works as plain text. Currently this request returns the following:

paintings
antiques
books
pottery
films

These types of works are to be added as option elements in the drop down box
#works-list (see figure to the right).

● Selecting a type of work from the #works-list should make a second GET
request to ajacksketch.php with mode=items and a type parameter set to a value for the
type of work to be retrieved. For instance, if the user wanted to retrieve all of Jack’s paintings, the
request would be made to ajacksketch.php?mode=items&type=paintings . The JSON
formatted response will look like this example:

{
"type": "paintings",
"description": "Egg tempera paintings of various sizes.",
"items": [

{
"name": "Aluminum Cans in a Plastic Bag",
"image": "paintings/Aluminum_Cans_in_a_Plastic_Bag/picture.png"

},
{

"name": "Market Scene 12",
"image": "paintings/Market_Scene_12/image.jpg"

},

...
]

}

Examples of the page displaying the paintings (left) and books (right) as type of works are shown below.

15

● The description of the type of work you are retrieving should be displayed in the #description
h2 element on the page.

● Each item should be displayed in a div created with an image (with alt text as the item name) and
a paragraph (also containing the item name). These div s should be put in the #works-displayed
div. Were you to inspect a page full of these items, each item on the page should have the
following HTML after being created (where the blanks are filled in with the appropriate information
from the JSON data):

<div>

<p>________</p>

</div>

● If the user changes which type of work is selected in the drop down, the description and all of the
items on the page should change to reflect the newly selected option.

● You should handle any fetch errors with console.log .

Write your JS solution below. Your code will be written in 3 parts:

a) Initialization
b) Fetching and displaying the drop down information
c) Fetching and displaying the contents of the page based on the user’s selection

You may assume that the checkStatus function and the aliases $(id) , qs(el) , and qsa(sel) are
defined for you and are included as appropriate.

(function() {
 "use strict";

 const URL = "ajacksketch.php";

 window.addEventListener("load", initialize);

 /**
 * Part a. Write your initialization code here. Note it may help to finish parts b

 * and c first.

 */

 function initialize() {

 }

16

/**
 * Part b. Write your function(s) to fetch and populate the drop down for
 * the web page here:
 */

 // Part c should be implemented on the next page

17

/**
 * Part c. Write your function(s) to fetch and display the contents of the
 * page based on the user’s selection here:
 */

})();

18

5. A Portfolio in PHP (PHP Web Service, 20pts)
In this question, you will implement the PHP web service (ajacksketch.php) you were asked to use in
the previous problem (JavaScript/AJAX). Note: there are additional features in this web service that were
not used in the previous problems

Directory Structure and File Format Details
Your web service will be located in the same level as one file, works.txt , that has a list of the artists
works, and a set of subdirectories that each correspond to the type of work the artist has done.

The subdirectories contain a file, description.txt , which contains a description of this type of work,
and another level of subdirectories, one for each item Jack has has created or collected in that category.
Each item subdirectory is named for the item, with underscores (‘_’ instead of spaces in the name), and
contains a picture.jpg image file.

ajacksketch Directory Structure:

ajacksketch.php

works.txt

antiques/

description.txt

Stained_Glass_Light/

picture.jpg

Stickley_Chair/

picture.jpg

 …

paintings/

description.txt

Aluminum_Cans_in_a_Plastic_Bag/

picture.jpg

Market_Scene_12/

picture.jpg

 …

films/

description.txt

Siberian_Rescue/

picture.jpg

works.txt File Contents:

antiques
paintings
films
books
pottery

description.txt File Contents (sample
from antiques/ directory):

An eclectic collection of antique furniture and
lighting.

19

Web Service Implementation
Your web service should support the following two GET requests (you may assume all query parameters passed
are in lowercase):

ajacksketch.php?mode=works

This request should return a plain text response of all types of works that Jack currently has offered on the
site, corresponding to the information in the works.txt file. Each work option should be output on a new
line. The order of lines in the output does not matter.

A request to ajacksketch.php?mode=works should output the contents of works.txt , trimming any
white space for each line. The output for the example contents would be:

antiques

paintings

films

books

pottery

ajacksketch.php?mode=items&type=<type of work>

This request should return a JSON response containing all of the information for each item under the type
of work listed (identical to the example we gave in Problem 4):

{
"type": "paintings",
"description": "Egg tempera paintings of various sizes.",
"items": [

{
"name": "Aluminum Cans in a Plastic Bag",
"image": "paintings/Aluminum_Cans_in_a_Plastic_Bag/picture.png"

},
{

"name": "Market Scene 12",
"image": "paintings/Market_Scene_12/image.jpg"

},

...
]

}

Error Handling
Your web service should handle the following errors with 400 error codes (in order of highest priority to
lowest priority). If any error occurs, only output the respective error message in plain text.

● If missing the mode parameter or the mode parameter is passed with a value other than works or
items , output an error with a message ”Please pass a mode of works or items”.

● If instead mode=items is passed you will need to check for the following:
○ If no type parameter is passed, output a message ”Missing type parameter for item

request”
○ If a type parameter is passed but that type is not in our list of works, nothing should be

output.

20

You are to write your solution to ajacksketch.php on the next pages in three parts:

a) Write a function to print an error message in the correct format with the correct header and end the
program

b) Write a function to get all of the information for a particular type of work (ie, the description, and all of the
items)

c) Write the main part of your ajacksketch.php service using part a) and b) (you may assume code from
part a) and b) work)

Part a:
Write a function error_message that will handle the error messages for your system. This function
should accept one string parameter, $msg and it will set the 400 Invalid Request error code and the
output type to plain before printing $msg as the error message and stopping the script from running any
further.

 Part b:
Write a function get_all_item_info that takes a string parameter $type and returns an associative
array based on $type where you may assume $type is listed in works.txt . The returned array
should contain information found from the description.txt file and the information in each item
subdirectory. For example, if $type has the value ”films”, the function might return the an associative
array corresponding to the contents in the films directory:

{

"type": "films",

"description": "Mockumentaries that are actually pretty good.",

"items": [

{

"name": "Siberian Rescue",

"image": "films/Siberian_Rescue/picture.jpg"

 }

]

}

21

IMPORTANT HINT: You will want to use this help function get_item_info($type, $item) to get all of
the information for one individual item in a category of work (for instance, just getting the information about the
“Siberian Rescue Item”)

 /* Function to get all of the information about a particular item based on the $type of
 * work and a name of the $item's directory (with '_' characters between words). The
 * function will return an associative array with information about that item.
 * For instance to get the item info about the
 * films/
 * Siberian_Rescue/
 * picture.jpg
 *
 * The call to get_item_info("films", "Siberian_Rescue") will return
 * array("name" => "Siberian Rescue", "image" => "films/Siberian_Rescue/picture.jpg")
 */
 function get_item_info($type, $item) {
 $obj = array("name" => str_replace("_", " ", $item),
 "image" => "$type/$item/picture.jpg");
 return $obj;
 }

/* Complete the code for the following function below for Part b. */

function get_all_item_info($type) {

}

22

Part c:
Assume your functions from Parts a and b work. In this part, you will write the rest of the
ajacksketch.php web service, handling the request types specified on the previous pages. Hint: You
will find it helpful to use the get_all_item_info function for the mode=items to get each of the the
items for each type of work as part of the response.

<?php

 # Write your code here:

 function get_all_item_info($type) {

assume this function works as specified in Part B

}

function error_message($msg) {

assume this function works as specified in Part A

}

?>

23

6. Around The World (SQL, 15pts)
Recall the following tables in the world database:

a. Write a SQL query to list the name and gnp of all countries in Asia with a gnp greater than 123456.

Expected results (9 rows total): Write your SQL query below:

name gnp

India 447114.00

Iran 195746.00

Japan 3787042.00

...

b. Write a SQL query to list the name of all countries having a population of fewer than 85,000 and which have
languages spoken (but not necessarily official) by a percentage of at least 50% of the population. Include the
language name and language percentage in your results. Order the results by language name (alphabetically
increasing) breaking ties by percentage (decreasing). Hint: The percentage column in the languages table
represents the percentage of the population speaking that language in the corresponding country.

Expected results (16 rows total): Write your SQL query below:

language name percentage

Creole English Dominica 100.0

Creole English Saint Kitts and Nevis 100.0

Creole English Antigua and Barbuda 95.7

English Bermuda 100.0

English Gibraltar 88.9

Faroese Faroe Islands 100.0

...

24

c. Write a SQL query to list the city name and continent name of all cities containing the word “sea” which are
cities in countries having English as an official language. Order the results by city name (increasing
alphabetically).

Expected results (3 rows total): Write your SQL query below:

name continent

Seattle North America

Southend-on-Sea Europe

Swansea Europe

25

26

7. Extra Credit
For this question, you can get 1 point of extra credit (demonstrating at least 1 minute’s worth of work and
being appropriate in content). You can draw or write your answers in text.

If you could give your TA a surprise winter break gift, what would it be?

27

