
CSE 154: Web Programming Spring 2018

Homework Assignment 7: Pokedex V2 Due Date: Wednesday, May 30, 11pm

This assignment is about using PHP together with SQL to create, modify, and query information in a database.

Overview
This is the first assignment where the primary focus is not a user interface but only the web service which will
connect to a database to retrieve and modify data.

Learning Objectives
• Continue to practice all of the learning objectives from Homeworks 1-6, including:

– Carefully reading a specification.

– Reducing redundancy in your code while producing expected output.

– Producing quality readable and maintainable code with unobtrusive PHP.

– Clearly documenting your code as specified in the CSE 154 Code Quality Guide.

• Building an API that responds to GET and POST requests using the PHP language.

• Using the PHP language to read information from a database.

• Using the PHP language to write information to a database.

Files Provided
To begin with you will not be provided any Graphical User Interface files for testing. On Monday we will release
client-side files for a small web app you can (optionally) use to test your API with. Details about the provided
files:

• main.html - the main page of the application, which lets a user choose to start a game or trade Pokemon
with another user and the pokedex/game view of the application, which lets a user choose a Pokemon to
play with and then play a Pokemon card game with another player.

• main.min.js and lib.min.js - the JS for main.html

• styles.css - the styles for main.html

Files to Submit
You will turn in the following files:

• setup.sql - a small SQL file that sets up your personal Pokedex table.

• getcreds.php - a web service for retrieving your player credentials (PID and token).

• select.php - a web service for retrieving the Pokemon from your Pokedex table.

• insert.php - a web service for adding a Pokemon to your Pokedex table.

• update.php - a web service for naming a Pokemon in your Pokedex.

• delete.php - a web service for removing Pokemon from your Pokedex table.

1

• trade.php - a web service for updating your Pokedex list after a Pokemon “trade”.

• common.php - shared PHP functions for your other PHP files.

Web Service Behavior

Creating Your Own Database - setup.sql
Before starting the PHP files, you will need to set up your own SQL database. In Cloud 9, you can do so by
starting the mysql terminal and entering the following commands:

CREATE DATABASE hw7;
use hw7;

This is the database your web service will be using to keep track of which Pokemon you have caught. Storing
your Pokemon in a database (instead of in a DOM element as you did in HW5) allows us to maintain the state
after refreshing or exiting the web page.

Write a SQL file setup.sql that creates a table called “Pokedex” to store your collected Pokemon. This file
should meet the following requirements:

• The “Pokedex” table should have three columns:

– “name” for each Pokemon’s name which also serves as the table’s PRIMARY KEY (e.g., “bulbasaur”)

– “nickname” for each Pokemon’s nickname (e.g., “Bulby”)

– “datefound” for the date and time you collected the Pokemon

• The name and nickname columns should have VARCHAR data types and allow string lengths of 30 characters
(you can allow longer if you wish).

• To represent the date and time, use the DATETIME data type. In MySQL, this type represents a date and
time in the format YYYY-MM-DD HH:MI:SS (e.g., 2018-05-15 13:54:00 to represent 1:54 PM on May 15th,
2018).

• Your database name (hw7), table name (Pokedex), column names (name, nickname, datefound) must
match exactly those here in the spec.

Note the following SQL commands that will probably prove useful:

SOURCE setup.sql; -- runs your setup.sql file
SHOW databases; -- lists databases in your mysql
USE hw7; -- tells mysql to use your hw7 database
SHOW tables; -- list tables in your currently active (hw7) database
DESCRIBE <tablename>; -- gives information about the columns of a table
DROP TABLE <tablename>; -- careful with this one, it deletes a table entirely

2

Fetching Player Credentials - getcreds.php
Request Format: getcreds.php
Request Type: GET
Returned Data Format: plain text
Description: This PHP file returns the user’s player ID (PID) and token. For this assignment, your PID will be
your UW netid. These PID and token values will be used by the front end code and the games webservice for
verifying that players are who they say they are when they play moves in battle mode, and trade with one another.

You will need to generate your token to play games and trade with other students on our server. To do so, visit
https://webster.cs.washington.edu/pokedex-2/18sp/uwnetid/generate-token.php. The PID and to-
ken values displayed should be carefully copy/pasted in your getcreds.php file.

In this PHP file, you should print the body containing your PID followed by your token, each on their own
line. Note that there are no query parameters for this file, so you print these values whenever the web service is
called.

Example Request: getcreds.php
Example Output (bricker is the example PID):

bricker
poketoken_123456789.987654321

Fetching Pokedex Data - select.php
Request Type: GET
Returned Data Format: JSON
Description: select.php should output a JSON response of all Pokemon you have found (your Pokedex table),
including the name, nickname, and found date/time for each Pokemon. This PHP web service does not take
any query parameters (ignore any parameters passed).
Example Request Output:

{
"pokemon": [

{ "name" : "bulbasaur",
"nickname" : "Bulby",
"datefound" : "2018-05-15 13:54:00" },

{ "name" : "charmander",
"nickname" : "Charmy",
"datefound" : "2018-05-16 08:45:10" },
...]

}

3

getcreds.php
https://webster.cs.washington.edu/pokedex-2/18sp/uwnetid/generate-token.php
getcreds.php

Adding a Pokemon to your Pokedex - insert.php
Request Type: POST
Query Parameters:

• name - name of Pokemon to add

• nickname (optional) - nickname of added Pokemon

Returned Data Format: JSON
Description: insert.php adds a Pokemon to your Pokedex table, given a required name parameter. The name
should be added to your Pokedex in all-lowercase (for example, name=BulbaSAUR should be saved as bulbasaur
in the Pokedex table).

If passed a nickname parameter, this nickname should also be added with the Pokemon (don’t modify the
anything to upper or lower case for the nickname, just store it as it was given). Otherwise, the nickname for
the Pokemon in your Pokedex table should be set to the Pokemon’s name in all uppercase (e.g., BULBASAUR
for name=BulbaSAUR). You should also make sure to include the date/time you added the Pokemon. In PHP,
you can get the current date-time in the format for the previously-described SQL DATETIME data type using the
following code:

date_default_timezone_set('America/Los_Angeles');
$time = date('y-m-d H:i:s');

You should add the result $time variable to add to your datefound table column.

Expected Output Formats:
Upon success, you should output a JSON result in the format:

{ "success" : "Success! <name> added to your Pokedex!" }

If the Pokemon is already in the Pokedex (as determined by a duplicate name field), you should print a message
with a 400 error header in the JSON format:

{ "error" : "Error: Pokemon <name> already found." }

Nothing should change anything in your Pokedex if there is an error due to a name collision. However, in both
success and error cases, <name> should be replaced with the value of the passed name (maintaining letter-casing).

4

Removing a Pokemon from your Pokedex - delete.php
Request Type: POST
Query Parameters:

• name - name of Pokemon to remove, or

• mode=removeall - removes all Pokemon from your Pokedex

Returned Data Format: JSON
Description:

• If passed name, delete.php removes the Pokemon with the given name (case-insenstive) from your
Pokedex. For example, if you have a Charmander in your Pokedex table and a request to delete.php with
name passed as charMANDER is made, your Charmander should be removed from your table.

• If passed mode=removeall, all Pokemon should be removed from your Pokedex table.

Expected Output Formats:
Upon success in using the name parameter, you should print a JSON result in the format:

{ "success" : "Success! <name> removed from your Pokedex!" }

If passed a Pokemon name that is not in your Pokedex, you should print a message with a 400 error header in
JSON format:

{ "error" : "Error: Pokemon <name> not found in your Pokedex." }

Your table should then not change as a result.

For both success and error cases, <name> in the message should be replaced with the value of the passed name
(maintaining letter-casing).

If mode is passed as a POST parameter with the value removeall, and all Pokemon are successfully removed
from your Pokedex table, you should print a JSON result in the format:

{ "success" : "Success! All Pokemon removed from your Pokedex!" }

If passed a mode other than removeall, you should print a message with a 400 error header in the format:

{ "error" : "Error: Unknown mode <mode>." }

where mode is replaced with whatever value the user passed for this query parameter.

5

Trading Pokemon - trade.php
Request Type: POST
Query Parameters:

• mypokemon - name of Pokemon to give up in trade

• theirpokemon - name of Pokemon to receive in trade

Returned Data Format: JSON
Description: trade.php takes a Pokemon to remove from your Pokedex mypokemon (case-insensitive) and a
Pokemon to add to your Pokedex theirpokemon.

When adding theirpokemon to your Pokedex, the Pokemon name should be in all lower case and the Pokemon
should have the default nickname format (i.e. the name in all UPPERCASE).

Expected Output Formats:
Upon success, you should print a JSON result in the format:

{ "success" : "Success! You have traded your <mypokemon> for <theirpokemon>!" }

If you do not have the passed mypokemon in your Pokedex table, you should print a 400 error header with the
following message in JSON format:

{ "error" : "Error: Pokemon <mypokemon> not found in your Pokedex." }

Otherwise, if you already have the passed theirpokemon in your Pokedex, you should print a 400 error header
with a message in the JSON format:

{ "error" : "Error: You have already found <theirpokemon>." }

If either error occurs, your table should not be changed as a result. For any case, <mypokemon> and <theirpokemon>
should be replaced with the respective query parameter values (maintaining letter-casing).

6

Renaming a Pokemon in your Pokedex - update.php
Request Type: POST
Query Parameters:

• name - name of Pokemon to rename

• nickname (optional) - new nickname to give to Pokemon

Returned Data Format: JSON
Description: update.php updates a Pokemon in your Pokedex table with the given name (case-insensitive)
parameter to have the given nickname (overwriting any previous nicknames)
If missing the nickname query parameter, the Pokemon’s nickname should be replace with the UPPERCASE
version of the Pokemon’s name (similar to the case in insert.php). So for example, if passed name=bulbasSAUR
(given you have a Bulbasaur in the table) and no nickname parameter is given, any previous nickname should
be replaced with BULBASAUR.

Expected Output Formats:
Upon success, you should print a JSON result in the format:

{ "success" : "Success! Your <name> is now named <nickname>!" }

As in the previous files, name and nickname should be printed in the same format as the respective query pa-
rameters.

If you do not have the Pokemon with the passed name in your Pokedex, you should output the error behavior as
in the same case for delete.php. If you are not passed a nickname, your success message should then use the
uppercase version of the pokemon’s name for the nickname (i.e. BULBASAUR as the format for <nickname>).

common.php
You should factor any shared code into common.php and turn it in with the rest of your PHP files. Recall that
you can use include(’common.php’) at the top of a PHP file to include all functions that are found in a file
called common.php (requiring it is in the same directory as the file including it).
For any PHP web service with GET or POST parameters, if the user does not provide a required parameter, a 400
error message should be output in the JSON format:

{ "error" : "Missing <parametername> parameter"}

if only one required parameter is missing, and

{ "error" : "Missing <parameter1> and <parameter2> parameter"}

if multiple parameters are required and missing. In the case that one of a number of parameters should be
provided, and none is, the error message should be of the form:

{ "error" : "Missing <parameter1> or <parameter2> parameter"}

These error responses should take precedence over any other error for each web service.

7

Development Strategy
SQL
This homework should give you a lot of experience using the mysql program to keep track of what changes are
being made to your database.

• Run basic versions of your queries from the mysql terminal before putting them into your PHP.

• Use try/catch(PDOException $pdoex) to trap SQL exceptions in your PHP code, and print them for
debugging.

PHP
The provided front end for this homework is NOT a good testing program. It assumes that your code works,
and makes many calls against your code in quick succession. We so STRONGLY encourage you not to use this
as a testing program that we are not even going to release it until day 3 of this assignment.
Instead we encourage you to call your PHP functions over the web before trying to use your code in concert with
the provided front end.

For GET requests (getcreds.php and select.php) the easiest thing to do is simply use a browser to visit the
URL and pass the query params.

For the other PHP files that you implement as POST requests, you’ll need to do something a little bit more
complicated. This is because it’s harder to simulate POST requests than GET requests, but you have some
options:

• Make a dummy HTML page that lets you write JS fetch commands for POSTS, or use the JS console.

• Make a dummy HTML page with a form that submits to your PHP program.

• Use a program like Postman https://www.getpostman.com/ to craft POST requests against your API.
(Note: you need Postman Interceptor if you are developing on Cloud9 – this lets Postman use your browser
login information to authenticate your request to Cloud9).

• One other way is to test with GET, and change to POST after you are satisfied that it works. However, you
should still test that the POST works before you turn your homework in, and for this reason, we encourage
you to use another testing strategy to get into the flow of actually testing POSTs.

General
• Get your database setup, implement setup.sql and practice making some database SELECT, INSERT,

UPDATE, DELETE queries from the mysql terminal

• Implement getcreds.php to get going on the PHP part of the assignment.

• As you work, be on the lookout for common code to factor into common.php

• Implement select.php using data that you have manually inserted into the DB from the mysql terminal

• Implement insert.php, and verify that it works first in the database, and then with select.php

• Implement update.php and delete.php

• Implement trade.php

• Review all of your files to make sure you’ve factored out any shared code into common.php

8

https://www.getpostman.com/

Implementation and Grading
• For full credit, your SQL and PHP code should follow the rules listed in the Code Quality Guide on the

course web site and follow a similar format to that of lecture examples.

• Your SQL file should have a header comment with your name and section at a minimum. You may choose
to comment your SQL file more than that but it is not required.

• Your PHP files should have adequate documentation. The top of the file should have a descriptive header
describing the assignment. Complex sections of code should be documented. Your PHP variables and
functions should be documented in a style like JSDOC documenting the method’s description, parameters
and return values.

• Format your code similarly to the examples from class. Properly use whitespace and indentation. Use good
variable and method names and follow the naming conventions as outlined in the Code Quality Guide. Lines
of code should be fewer than 100 characters long.

• You must use the ensure that a users can not inject malicious SQL into your database by PDO prepare/exec
set of statements for insert, delete and update queries.

• Your PHP code should not cause errors or warnings. Add error_reporting(E_ALL); to the top of your
.php file so errors are thrown and not kept silent. Hint: If you set error handling in common.php it will be
set in any file that includes common.php.

• Variables should be localized as much as possible.

• Do not use the global keyword.

• Utilize PHP functions for good readability. Capture common operations as functions to keep code size and
complexity from growing.

• You should not be creating more than one database (PDO) object for any request. Consider factoring out
your code that opens the database connection.

• Alternatively, you should not create a database (PDO) object when you do not need one.

• You should make an extra effort to minimize redundant code. Capture common operations as functions to
keep code size and complexity from growing.

Grading Rubric
This assignment will be out of 20 points. The key areas we will be looking at assess directly relate to the learning
objectives, and your matching the specification for the external behavior as well as the internal correctness of
your code. NOTE: While we can not guarantee the same distribution of points, past rubrics have been split with
60% of the points allocated to external correctness and the 40% for internal. Thus a potential rubric might be
summarized as:

External Correctness (12 pts)
• Database setup

• Web Service

– player credentials

– getting pokedex data

– adding pokedex data

9

– removing pokedex data

– trading pokedex data

– renaming pokemon

– error handling

• Service client (JavaScript)

Internal Correctness (8 pts)

• PHP

– follows class code quality guidelines

– avoids redundancy, uses function to encapsulate functionality

– functions are well documented including parameters and return values

– strict error reporting turned on

– sets JSON_encode properly

• setup.sql works as expected.

• Otherwise good quality code - a catch all for things like indentation, good identifier names, long lines,
large anonymous functions, etc.

Academic Integrity
As with any CS homework assignment, you may not place your solution to a publicly-accessible web site, neither
during nor after the school quarter is over. Doing so is considered a violation of our course academic integrity
policy. As a reminder: The University of Washington has an entire page on Academic Misconduct on their
Community Standards and Student Conduct Page. Please acquaint yourself with the University of Washington’s
resources on academic honesty, and in particular how academic misconduct will be reported (which has been
changed for 2017).

10

https://www.cs.washington.edu/academics/misconduct

