
CSE 154 Practice Exam from 16au

Name: _______________________________ Quiz Section: __________
TA: _______________________________ Student ID #: ___________________

Rules: You have 110 minutes to complete this exam. You will receive a deduction if you keep
working after the instructor calls for papers. This test is open-book, but closed notes. You may
not use printed/written notes or practice exams. You may not use any computing devices,
including calculators, cell phones, or music players. Unless otherwise indicated, your code will
be graded on proper behavior/output, not on style.
Do not abbreviate code, such as writing ditto marks ("") or dot-dot-dot marks (...). You may not
use JavaScript frameworks such as jQuery or Prototype when solving problems. If you enter
the room, you must turn in an exam and will not be permitted to leave without doing so. You
must show your Student ID to a TA or instructor for your submitted exam to be accepted.

Good luck!

Problem: Possible: Score:

HTML 10

CSS 15

Javascript 15

Javascript and AJAX 15

PHP Webservice 15

SQL 15

Embedded PHP 10

Regular Expressions 5

 100

HTML (10 points)
<html lang="en">
<head>
 <title> CSE 154 Hello, World! </title>
</head>
<body>

<div>
 Hello <div>World!</div>
 <src="hello.jpg" alt="image of hello" img>
</div>

<p
 CSE 154 is the best class ever! #propagandamachine
</p>

<blockquote>
 The internet is a series of tubes.

</body>
</html>

This html document won’t validate, and would generate many errors and warnings. However, it
is possible to make it validate by changes to 5 lines in the html. Indicate what changes you
could make to the html document to make it pass validation. Write directly on the html.

Below, briefly describe the changes that you made, and why you had to make each change in
order to validate. If it is unclear what changes go with which explanations, feel free to number
your changes on the html to match the explanations. No need for an essay -- 20 words or less
should be plenty.

1. __

2. __

3. __

4. __

5. __

HTML Key:
1. All html documents need a DOCTYPE tag to inform the consumer what type of document this
is
2. Block elements not allowed inside inline elements
3. Malformed img tag -- 'img' should be the first thing inside the <>
4. Malformed <p> tag needs a closing angle bracket
5. Blockquote elements need a closing tag

CSS (15 points)
<!DOCTYPE html>
<html lang="en">
<head>
 <link rel="stylesheet" type="text/css" href="index.css" />
</head>
<body>

<div id="1" class="menu">
 Home
</div>

<div id="3" class="banner-advertisement">
 <p id="4">
 Support our
sponsor!
 </p>
</div>

<div id="6" class="content">
 <p id="7">
 Welcome to my home page. I mostly made it for the ad
revenue... so...
 </p>

 Check out mah blog!

</div>

<div id="11" class="menu">
 Home
</div>

</body>
</html>

Query selectors:
For each of the following query selectors, indicate the ​id ​s of all of the html elements that would
be found by the selector.

span __

.banner-advertisement __

.home-link __

div a __

div p, div > span __

Implement index.css:
1. make the ​.content <div> ​ float to the right, and consume 75% of the width of the page.
2. make the text size of the advertisement link 32pt. (Gotta make that money.)
3. make all ​<p> ​ elements have no margin, border, or padding
4. make the background color of all menus black, and have a 3px border that is solid and
colored rebeccapurple.
5. make the color of all links inside menus white

CSS Key
span 8, 9__
.banner-advertisement 3___
.home-link 2, 12_______________________________________
div a 2, 5, 10, 12________________________________
div p, div > span 4, 7, 9_____________________________________

Implement index.css: (10 points)
1. make the ​.content <div> ​ float to the right, and consume 75% of the width of the page.
2. make the text size of the advertisement link 32pt. (Gotta make that money.)
3. make all ​<p> ​ elements have no margin, border, or padding
4. make the background color of all menus black, and have a 3px border that is solid and
colored rebeccapurple.
5. make the color of all links inside menus white

/** Note: #5 here is harder than #2 because with #2, since links don’t have a default color assigned, you
don’t actually have to select the ​.banner-advertisement a​, you can just do
.banner-advertisement​. With #5, you do need it, because the default stylesheet will set the color of ​a
tags, meaning the selector here has to be as or more specific.​ ​*/

.content { /** 1 */
 float: right;
 width: 75%;
}

.banner-advertisement a { /** 2 */
 font-size: 32pt;
}

p { /** 3 */
 border: none;
 padding: 0px;
 margin: 0px;
}

.menu { /** 4 */
 background-color: black;
 border: 3px solid rebeccapurple;
}

.menu a { /** 5 */
 color: white;
}

Javascript, AJAX, XML, JSON, PHP, Webservices:
Use this html document for reference for the following 3 problems.
<!DOCTYPE html>
<html lang="en">
<head>
 <script src="sesame-street.js" type="text/javascript"></script>
 <script src="fetch-pie.js" type="text/javascript"></script>
</head>
<body>

<h1>Whitaker's Desserts</h1>

<h2 id="cookie-header">Whitaker's Cookie Jar:</h2>
<ul id="cookie-jar">
 <li class="cookie">Chocolate Chip
 <li class="cookie">Oatmeal raisin
 <li class="cookie">Macaroon

<p id="cookie-count"></p>

<h2>Whitaker's Pie Cupboard:</h2>
<ul id="pie-cupboard">

<button id="moar-pie">Moar Pie!</button>

</body>
</html>

Javascript (15 points)
Implement sesame-street.js
a. (Big Bird Yellow): When the page loads, apply a style to the #cookie-header <h2> that sets
the text color to hex value #f7f16d

b. (Count Chocula): Implement javascript in sesame-street.js such that when the page loads,
you find all of the cookie list items in the cookie-jar, count them, and set the text of the
#cookie-count <p> ​ to be.
<# of cookies>! There are <# of cookies> cookie(s) in the cookie jar!

(Replace ‘<# of cookies>’ with the correct number).

c. (Cookie Monster hungry): Implement javascript logic to remove the last cookie in Whitaker's
cookie jar every 30 seconds. Make sure to update the #cookie-count when you remove a
cookie: to accomplish this, you may assume that your solution from part(b) is correct and
functional.

Javascript/DOM: sesame-street.js:
(function() {
 // part c
 var timer = null;
 window.onload = function() {
 // part a
 document.getElementById(“cookie-header”).style.color = “#f7f16d”;
 // part b
 countCookies();
 // part c
 timer = setInterval(eatTheCookies, 1000 * 30);
 };

 // more part b
 function countCookies() {
 var cookies = document.querySelectorAll(“#cookie-jar li.cookie”);
 var countDiv = document.getElementById(“#cookie-count”);
 countDiv.innerHtml = cookies.length + “! There are ” +
 cookies.length + “ cookie(s) in the cookie jar!”;
 }

 // part c
 function eatTheCookies() {
 var cookies = document.querySelectorAll(“#cookie-jar li.cookie”);
 if (cookies.length) {
 var lastCookie = cookies[cookies.length - 1];
 lastCookie.parent.removeChild(lastCookie);
 } else {
 timer = null;
 }
 // update the cookie count
 countCookies();
 }

})();

Javascript, AJAX: (15 points)
Implement fetch-pie.js. fetch-pie.js should allow the user to click the 'Moar Pie!' button to fetch
Whitaker's pies from a web service.

Make an AJAX get request to a webservice that lives at:
https://whitakers.pi.es/getPies.php

It returns an xml document with this structure:
<?xml version="1.0" encoding="UTF-8"?>
<pies>
 <pie type="pumpkin"></pie>
 <pie type="banana-cream"></pie>
</pies>

Upon receiving the xml, use javascript to insert one list item per pie into the ​#pie-cupboard
 ​. Each pie list item should have class 'pie'. The list item's text should contain only the type
of pie (exactly as it appears in the 'type' attribute). Replace or remove any pies that were
present in ​#pie-cupboard ​. For example, with the above xml, you should insert the following
list items into the ​#pie-cupboard :

<li class="pie">pumpkin
<li class="pie">banana-cream

If there is an error retrieving the pies, insert one list item into the ​#pie-cupboard ​ with
class 'error', and text that you choose that describes that an error occurred while fetching the
pies. Replace or remove any pies that were present in ​#pie-cupboard.

Javascript/AJAX: fetch-pie.js
(function() {
 window.onload = function() {
 document.getElementById("moar-pie").onclick = fetchPie;
 };

 function fetchPie() {
 var xhr = new XMLHttpRequest();
 xhr.open("GET", "https://whitakers.pi.es/getPies.php", true);
 xhr.onload = handlePies;
 xhr.send();
 }

 function handlePies() {
 document.getElementById("pie-cupboard").innerHTML = '';
 if (this.status == 200) {
 var pieDom = this.responseXML;
 var pies = pieDom.querySelectorAll("pie");
 for (var i = 0; i < pies.length; i++) {
 var pieLi = document.createElement("li");
 pieLi.classList.add("pie");
 pieLi.innerHTML = pies[i].getAttribute("type");
 document.getElementById("pie-cupboard").appendChild(pieLi);
 }
 } else {
 var errorLi = document.createElement("li");
 errorLi.innerHTML = "Unable to fetch pies from webservice";
 document.getElementById("pie-cupboard").appendChild(errorLi);
 }
 }
})();

PHP Webservice (15 points)
Implement getPies.php:
Write a php webservice that reads Whitaker's pies out of a file called 'pies.txt', and prints
out JSON content representing the pies in the following form:

{
 'pies' => [
 { 'type' => 'pumpkin' },
 { 'type' => 'banana-cream' },
 ... more pie ...
]
}

pies.txt contains one line per type of pie, and the reason that Whitaker likes it. The type
of each pie is guaranteed to not have a ':' character.

pumpkin: all of thanksgiving nostalgia
banana-cream: excellent for throwing at people

Your php program should also accept a query parameter 'limit' that caps the number of pies
returned. You may assume that user passes in a valid value for limit, that is, a non-negative
integer. However, if the user does not pass a limit query parameter, you should assume that
they want a limit of 10 pies.

For example the, a call to:

https://my.host.com/getPies.php?limit=4

Would return the first 4 pies in pies.txt (or fewer if pies.txt has fewer than 4 pies)

Note: this is the corresponding webservice for the previous problem, however in the previous
problem, the webservice vended XML, and this service vends JSON.

PHP Webservice key:
<?php
$limit = 10;
if (isset($_GET['limit']) {
 $limit = $_GET['limit'];
}

$lines = file('pies.txt');

could also do this with a for loop:
$lines = array_slice($lines, 0, $limit);

$pies = [];
foreach ($lines as $line) {
 $type = explode(':', $line)[0];
 $pies[] = $type;
}

return json_encode(['pies' => $pies]);

SQL (15 points)
All from the Simpsons. You can view the schema here:
https://webster.cs.washington.edu/cse154/query/

1. Select all the rows and columns from the teacher table.
2. Select only the grade column from the grades table where the course id is greater than
10006.
3. Select the course ids of all the courses that students named Bart took.

Key:
1.
SELECT * FROM teachers;

2.
SELECT grade FROM grades where course_id > 10006;

3.
SELECT c.id from courses c
join grades g on c.id = g.course_id
join students s on g.student_id = s.id
where s.name = 'Bart';

Embedded PHP: (10 points)
Write a pair of pages that work together to allow the user to upload an image, img_upload.html
and img_submit.php.

img_upload.html should be a full and well-formed html page containing a form with a file upload
input and a submit button. When the user submits the form, it should post the form to
img_submit.php, located in the same directory.

When the user posts a file to img_submit.php, your program should check to see whether the
filename of the file that was given ends in .jpg or .gif. If it doesn’t, the page should respond with
HTTP/1.1 status code 400, and then die() with an error message describing the problem.

You should save the file by moving it into the same directory as your program, saving the image
as the original filename that was given by the POST request. Then, it should render a complete
HTML document with the image in the document as an img element. The alt text of the img
should be “user uploaded image”. The title of the html page that is rendered should be:
“CSE 154: Viewing file <<filename>>”

Error handling: if the file fails the is_uploaded_file check, or if the filename of the file that the
user uploaded doesn’t end with .jpg or .gif, you should respond with a header that indicates a
status code of 400, and die() with an appropriate error message.

Embedded php key:
img_upload.html:
<!DOCTYPE html>
<html lang="en">
<head> <title> CSE 154 Image upload </title> </head>
<body>
<form action="img_submit.php" method="post" enctype="multipart/form-data">
 <input type="file" name="image" title="File upload">
 <input type="Submit" value="Upload a file">
</form>
</body>
</html>

img_submit.php
<?php
$filename = $_FILES["image"]["name"];
$isUploaded = is_uploaded_file($_FILES["image"]["tmp_name"]);
$filenameIsImage = preg_match("/\.(gif|jpg)$/", $filename);
if($isUploaded && $filenameIsImage) {
 move_uploaded_file($_FILES["image"]["tmp_name"], $filename);
} else {
 header("HTTP/1.1 400 Unable to accept uploaded file.");
 die("Unable to accept uploaded file");
}
?>

<!DOCTYPE html>
<html lang="en">
<head> <title> CSE 154: Viewing file <?= $filename ?> </title> </head>
<body>
<img src="<?= $filename ?>" alt="user uploaded image" >
</body>
</html>

Regular Expressions: (5 points)
Write regular expressions that match the descriptions.

1. Bob Loblaw: Write a regular expression that matches the name ‘Bob Loblaw’ anywhere

in a string. Also, there can any number of ‘b’s in the middle of ‘Loblaw’:

__

Matches:
Bob Loblaw
Bob Lobbblaw
Bob Lobbbbbbbbbbblaw
We aren’t here to talk nonsense to ​Bob
Lobblaw​.

Does NOT match:
Bbob Loblaw
Bob Loboblaw

2. Write a regular expression that matches any dollar amount, anywhere in a string:

__

Matches:
$100
$200​.00
Hello​$2
$99999​.999999

Does NOT match:
$ABC
1234
$ab1234

3. Mr. or Mrs. F: Write a regular expression that matches an entire string representing

someone with the last name ‘F’, and any title: Mrs., Ms., Miss, or Mr.

__

Matches:
Mrs. F
Mr. F
Miss F
Ms. F

Does NOT match:
Jr. F
Mr. Frank
Ms Frank
SMr. F

Regular expressions key:
1. Bob Lob+law
2. \$[0-9]+
3. ^(Ms.|Mrs.|Miss|Mr.) F$

