Name:
UWNet ID: @uw.edu

TA (or section):

Rules:

You have 120 minutes to complete this exam.
You will receive a deduction if you keep working after the instructor calls for papers.
You may not use any electronic or computing devices, including calculators, cell phones, smartwatches,
and music players.
Unless otherwise indicated, your code will be graded on proper behavior/output, not on style.
Do not abbreviate code, such as writing ditto marks (””) or dot-dot-dot marks (...). You may not use
JavaScript frameworks such as jQuery or Prototype when solving problems.
If you enter the room, you must turn in an exam and will not be permitted to leave without doing so.
You must show your Student ID to a TA or instructor for your submitted exam to be accepted.

Question Score Possible

HTML/CSS 15

Short Answer 18

JS/DOM/Animations 12

JS with AJAX 20

PHP Web Service 20

SQL 15

1. HTML/CSS (Part A): Query Selectors
Consider the following HTML:

<html>
<heading>
<title>CSE 154 Course Web Page</title>
</heading>
<body>
<header id="title-1">
<hl id="title-2"><em id="em-1">All the CSE 154 Course Stuffff Ever</hl>
</header>
<p id="subtitle-1">Topics:</p>
<ul id="1list-1">
<1li id="topic-1">What is the Internet
<1li id="topic-2">How to do the Internet</1li>
<1li id="topic-3">How to make the Internet
<li id="topic-4">
Make cool projects:
<ol id="1list-2">
<li id="hw-1">Make Pies</1i>
<li id="hw-2">Watch Lion King</1li>
<1li id="hw-3">Read <em id="em-2">rly rly rly fast
<1i id="hw-4">Push squares around
<li id="hw-5">Catch 'em alll</1i>

</1i>

<div id="div-1">
0ur course mascot!
</div>
</body>
</html>

Write the ID’s of the elements selected by each of the given selectors:

l.p

2.01 11

3.11 em

4, ul > 1i

5. 1i 11

1. HTML/CSS (Part B): Writing CSS
Given the following HTML body, write the CSS to fit the requirements.

<body>
<h1>A Collection of the best recipes ever</hl>
<article id="recipe-list">

Holiday Cookies</1i>
lLasagna</1i>
Ants on a Log
Kimchi Burrito</1li>

</article>
<article id="recipe-area">
<h2>Holiday Cookies</h2>
<article id="ingredients">

flour</1li>
sugar</1i>
magic</1i>

</article>
<p class="instruction">Combine all the ingredients.</p>
<p class="instruction">Wish on a shooting star.</p>
<p class="instruction">Profit.</p>
</article>
</body>

Styling Requirements:

The background of the entire page should be #123456.

The color of the text for all the headings should be teal.

Every element with the class instruction should have a border that is 2 pixels, dashed, and red.

The article with the id recipe-list width should take up 40% of its parent's width.

The article with the id recipe-area width should take up 60% of its parent's width.

The text in the list inside the article with the id ingredients should have a font preference of Arial,
Helvetica, or any other sans-serif font.

Write your solution to Problem 1 (Part B) on the next page.

Write your solution to Problem 1 (Part B) below:

1. What is one reason to use semantic tags instead of a <div> in HTML?

2. What is one example of validating user input on the client-side?

3. What'’s the difference between margin, borders, and padding? (You may provide a labeled diagram)

4. What is the difference between setInterval and setTimeout?

5. What is the difference between a GET and POST request?

6. What is one advantage of using a SQL database over text files to store data?

7. For each of the two regular expressions, circle all the string(s) below that match it:

i. /[A-Za-z]+@Q[0-9]/ ii. /*F*\.Jjpg$/
e foo0+@5 ® F.Jjpg
e fooR123 e "FFF.Jjpg$
e 45foo0@321 e FFF.Jpg
e f8QRS8f e F\.jpg

Regex reference:

A single character of: a, b, or ¢ i Any single character Cais) Capture everything enclosed
Any single character except: a, b, or ¢ Any whitespace character (alb) aorb

Any single character in the range o-z Any non-whitespace character a? Zero or one of a

Any single character in the range a-z or A-Z
Start of line

End of line

Start of string

End of string

Any digit (e Zero or more of a
Any non-digit a+ One or more of a

Any word character (letter, number, underscore) a{3} Exactly 3 of a
Any non-word character a{3,} 3 or more of a
Any word boundary af3,6} Between 3 and 6 of a

€25 68006

options: i case insensitive m make dot match newlines X ignore whitespace in regex o perform #{...} substitutions only once

8. Suppose a directory has the following structure:

test.php
mydir/
images/
puppyl.jpg
puppyl.png
puppy2.gif
puppy-facts.txt
puppy-haz-pizza.jpg
What do each of the following statements return if written in test.php? Use [] notation for any arrays and put

nn

strings in "".

Statement Return Value

scandir("mydir")

scandir("mydir/images")

glob("mydir/puppy-facts.txt")

glob("mydir/*/*")

glob("mydir/puppy*")

3. The Little Traveler (JS/DOM/Animations)

Given the HTML and CSS on the following page, write the JavaScript code thataddsa .little-box divto
the top left corner of the #box div, and moves the little box inside of the #box 20px up, down, left, or right
randomly every 100ms. The little box may only move to a position that is inside of the boundaries of the parent
#box. Note that the #box parent has a width and height of 500px, and the .1ittle-box div has a width and
height of 20px (without any border):

The Little Traveler
To the right is a screenshot of the little box during an animation. Write your

JavaScript solution on the next page following the provided HTML and CSS:

<!DOCTYPE html> <!-- HTML for Problem 3 --> ™
<html lang="en">
<head>

<link href="traveler.css" rel="stylesheet" />
<script src="traveler.js"></script>

</head>

<body>
<h1>The Little Traveler</hl>
<div id="box"></div>

</body>

</html>

/* CSS for Problem 3 */

hl {
font-family: Helvetica, Arial, sans-serif;
text-align: center;

}

.little-box {
background-color: #000;
height: 20px;
position: absolute;
width: 20px;

}

#box {
border: 2px solid black;
height: 500px;
margin: auto auto;
position: relative;
width: 500px;

Write your solution to Problem 3 below:

(function() {
"use strict";

NO;

4. Fetching Pets Who Fetch with Fetch (JS/AJAX) CSE 154 Pets!

Write a JavaScript file pets.js that plays a guessing game with the client, Can you guess which pet belongs to which instructor/TA?
displaying the name and image of a random pet owned by a CSE 154 staff
member, and which keeps track of how many times the client correctly
guesses the TA/instructor who owns the pet. To the right is a screenshot of
the page before a user has made any guesses.

Pascal (Dog)

Initial Behavior

When the page loads, you should make an AJAX request to pets.php with a
query parameter of mode=tas. Use the returned (plain text) response to
populate #ta-list with a new option tag for each TA/instructor name in the
result. (Hint: remember that each option tag in a dropdown should have a
unique value attribute to determine what the current selection is).

Staff: | Kyle v || Guess!
Correct guesses: 0

Total guesses: 0

Example response from pets.php?mode=tas:

Conner
Jeremy
Kyle
Lauren
Melissa
Sam

In addition to populating the dropdown with staff names, you should initialize the guessing game with the first
random pet. You should get this data with a call to pets.php, passing the query parameter mode=random.
Using the JSON response returned, you should update #pet-name and #pet-type to be the name and type of
the random pet and update the source of #pet-img to be a randomly-selected image source path contained in
the JSON’s images array. If the array contains only one image, you should use this image as the source. When
the pet image is first changed, remove the initial hidden” class from #pet-img (you should not hide it again).

Example response from pets.php?mode=random:

name : "Melissa",
petname : "Mowgli",
type : "Dog",

age : "10 months",

images: ["Melissa/Mowgli/mowgli at school.jpg",
"Melissa/Mowgli/mowgli in moose sweater.jpg",
"Melissa/Mowgli/mowglis first steps.jpg",
"Melissa/Mowgli/sleep puppy.Jjpg"]

Once the initial pet information is populated on the page, the #guess-btn should be enabled (it is initially
disabled with the class "disabled” - removing this class will enable the button).

Processing Guesses

When a user clicks the guess button, the button should be disabled again and the currently-selected
TA/instructor name in #ta-list should be used to make a guess of the pet’s owner. If the guess is correct for the
current pet, increment the value for #count by 1. Whenever a guess is made, #total should be incremented by 1.

Below is a screenshot after 6 guesses with 5 correct guesses (with a new random pet displayed):

CSE 154 Pets!

Can you guess which pet belongs to which instructor/TA?

Mowgli (Dog)

Staff: | Melissa v || Guess!

Correct guesses: 5

Total guesses: 6

After a guess has been made, a new random pet should be retrieved from pets.php to populate the #pet-info
similar to case for the first random pet. The current selection in the drop-down should remain unchanged. Once
data for a new random is retrieved successfully, re-enable the #guess-btn.

The HTML for the page is provided below. Start your JS solution on the next page.

<!DOCTYPE html>
<html lang="en">
<head>
<script src="pets.js"></script>
<link href="pets.css" rel="stylesheet" />
</head>
<body>
<h1>CSE 154 Pets!</hl1>
<p>Can you guess which pet belongs to which instructor/TA?</p>

<div id="pet-info">
<h2> ()</h2>

</div>

<div id="guess-ui">

<p>Staff:</p>

<select id="ta-list"></select>

<button class="disabled" id="guess-btn">Guess!</button>
</div>

<div>
<p>Correct guesses: 0</p>
<p>Total guesses: @</p>
</div>
</body>
</html>

Write your solution to Problem 4 below:

(function() {
"use strict";

NO;

5. The Thing That We Fetch From For Fetching Pets Who Fetch (PHP)

Write a PHP web service called pets.php which provides data about CSE 154 staff and their pets. For this
problem, assume your PHP file is in the same directory as pets.txt and a collection of folders for each
TA/instructor. On the rest of this page, we will provide a short overview of the files/directories you will work with.
The implementation requirements for the web service will be given on the following page.

pets.txt

This file contains information about each staff member’s pet on its own line, in the following format:

name petname pettype petage

where name is the staff member’s first name, petname is the name of the pet owned by name, pettype is the
type of pet, and petage is the age of the pet. You may assume name, petname, and pettype contain no
spaces and have only English alphabet letters, but petage may have spaces and numbers (e.g. “1 month” or
“8 years”). Note that some staff members have more than one pet, but each pet is on its own line.

An example of pets.ixt is given below:

Melissa Mowgli Dog 10 months

Kyle Pascal Dog 9 years

Sam Cachaca Dog 3 years

Lauren Spot Cat 16 years

Lauren Jack Cat 16 years

Lauren Whitney Cat 16 years

Jeremy Coloratura RainbowPony 154 days
Conner Bailey Dog 6 months

Staff and pet directories

Any staff member who has a pet has a directory named for each of their pets. Each pet directory contains at
least one .jpg photo (it may also include non-jpg file types). For example, Melissa’s dog Mowgli is her only
pet. So in the folder Melissa/, there is a folder called Mowgli/ which contains the following files:
mowgli at school.jpg

mowgli in moose sweater.jpg

mowglis first steps.jpg

mowglis growth chart.csv

sleepy_puppy.Jjpg

Manesh does not have a pet, so in the directory Manesh/, there are no directories for pets (although there may
be other folders/files in his directory). When implementing your PHP, you may assume that the format of each
staff member’s name and their pet’'s name is exactly the format of the corresponding folder names.

Web Service Implementation
Your web service should accept two possible modes (case-insensitive):
mode=tas

If a mode of tas is passed as a GET parameter, your web service should output as plain text a list of all staff
members who own pets, with each TA/instructor’s name on its own line. Below is example output:

Conner

Jeremy

Kyle

Lauren

Melissa

Sam

mode=random

If a mode of random is passed as a GET parameter, your web service should output a JSON response with
information about a random pet listed in pets.txt as is shown in Problem 2. The general format of the
expected JSON response is provided below:

name: "staffname",

petname: "petname"

type: "pettype",

age: "petage",

images: ["imageOl.jpg", "imageOl.jpg", ...]

Anything above in quotes should be replaced with the corresponding information unique to the
randomly-chosen pet.

The array of images for the pet (the value for the JSON’s images key) should contain all .jpg images found in
the directory name/petname/ given as full paths relative to the location of pets.php. For example, if Mowgli
was the random pet result for a call to pets.php?mode=random, the result JSON would be identical to that
from Problem 3. Each pet in pets.ixt should have an equally-likely chance of being returned from this mode.

If either mode is not passed, your program should output an error with a status of “HTTP/1.1 400 Invalid
Request” and a plain text error message, "Error: Please pass in a mode parameter of tas or random.”

Start your PHP code on the next page.

Write your solution to Problem 4 below:

6. SQL Queries
Recall the IMDB (Movies) database from the CSE 154 Query Tester:

imdb_small and imdb:
id name year |rank actor_id | movie_id | role id first_name | last_name | gender | film_count
112290 | Fight Club 1999 | 8.5 433259 | 313398 Capt. James T. Kirk 433259 | William Shatner M 162
209658 | Meet the Parents | 2000 | 7 433259 | 407323 Sgt. T.J. Hooker 797926 | Britney Spears F 65
210511 | Memento 2000 | 8.7 797926 | 342189 Herself 831289 | Sigourney | Weaver F 72
movies roles actors
director_id | movie_id id first_name | last_name movie_id | genre
24758 112290 24758 | David Fincher 209658 Comedy
66965 209658 66965 | Jay Roach 313398 Action
72723 313398 72723 | William Shatner 313398 Sci-Fi
movies_directors directors movies_genres

1. Write a SQL query to list the first and last names of all the female actors that have a first name that starts or
ends with “W”.

Expected results (5 rows returned total):

first_name last_name
Wendy Lee Avon
Wilma Jeanne Cummins
Wynter Kullman

W. Lauren Sanchez
Meadow Williams

2. Write a SQL query to list all columns out of the directors table for all directors that have directed a movie with
a rank of 8 or higher, order by last name of director in alphabetical order. Return one row per unique director.

Expected results (20 rows returned total):

id first_name last_name
429 Andrew Adamson
9247 Zach Braff
11652 James (I) Cameron

