CSE 154: Web Programming Autumn 2017
Homework Assignment 5: Pokedex Due Date: Wednesday Nov. 15th

This assignment is about using AJAX to fetch data in JSON format and process it using DOM manipulation.

Overview

In this assignment, you will implement views for a Pokedex and two Pokemon cards. (Note: You will not need
to know anything about the Pokemon game throughout this assignment, although we hope you enjoy
having a more fun twist to your homework!) A Pokedex is an encyclopedia (or album) of different Pokemon
species, representing each Pokemon as a small “sprite” image. In this assignment, a Pokedex entry (referenced
by the sprite image) will link directly to a Pokemon card, which is a card of information for a single Pokemon
species, containing a larger image of the Pokemon, its type and weakness information, its set of moves, health
point data, and a short description.

Each Pokemon has one of 18 types (fire, water, grass, normal, electric, fighting, psychic, fairy, dark, bug, steel,
ice, ghost, poison, flying, rock, ground, and dragon) and one weakness type (also from this set of 18 types).
Again, you don't need to know about the strength/weakness of different types - this information will be provided
to you as needed.

In this assignment, we will simplify things by assuming that each Pokemon has no more than 4 moves (some
have fewer, but all Pokemon have at least one move). In addition, we assume that the complete Pokedex has 151
Pokemon (more have been added over the game's history, but these comprise the original set of Pokemon species).

You will create and turn in a JS file called pokedex. js. This JS file will use the provided pokedex.html and
pokedex.css. These HTML and css files are provided with image files in a zipped folder located at
https://webster.cs.washington.edu/pokedex/resources.zip:

e pokedex.html: The HTML page for displaying a user’'s Pokedex and two game cards

e pokedex.css: The style sheet for pokedex . html

e icons/: .jpg icons for types, weaknesses, .png icons for buffs, and .gif icon for loading animation
e images/: .jpg card images for 151 the Pokemon

e sprites/: .png sprite images for 151 the Pokemon

Data

You will use JavaScript and AJAX requests to update pokedex.html as needed. Your program will read data
from the following two web services we have provided for the assignment:

e https://webster.cs.washington.edu/pokedex/pokedex.php
e https://webster.cs.washington.edu/pokedex/game.php

We have provided documentation for each of these APIs in hw5-apidoc.pdf. You will need to read through this
documentation in order to use the APls properly for this assignment. You may assume that the data returned
from both of these web services is valid and follows the formats given.

Appearance and Behavior

Part I: Main View

The provided HTML and CSS files display the main view by default when the page is loaded. Below is an example
of this template:

Your Pokedex

A 4 A

& Pokemon Name 60HP

>

Description here

@ Move Name Here I
@ Move Name Here I
@ Move Name Here I
. @ Move Name Here I

\. .

For the first part of this assignment, you will populate the right container (#pokedex-view) with all 151 Poke-
mon sprite icons by making an AJAX “GET" request to pokedex.php?pokedex=all. You should also initialize
your current “found” Pokemon in your JS file (you may use a module-global array to do so) with the three starter
Pokemon: Bulbasaur, Charmander, and Squirtle. Throughout the game, you will have the chance to collect
Pokemon to add to your collection. Below is an image of the expected output (just displaying the #pokedex-
view) when the Pokedex has been populated:

EEY I TS TR AR Y Y
s FALs s I EVIAE L
LORFYNEEREWALAANRW
FEE RPN TN REY X
" EEDS A R NI NS N
v LRMESEE T WARET op
B APYLE s FRLBBW TS
S EE T EE W EE BEE"FX
¥ M XNBREB AV BT ot
N E BB

hw5-apidoc.pdf

All 151 imgs added to the #pokedex-view should have a class of . sprite and have their src attribute set to the
image path returned in the plain text response. These image paths will be in the format img/pokemonname . png.
You will need to prepend sprites/ to the src to correctly link the corresponding sprite image (if you are using
the images locally, remember to make sure that your unzipped image folders are in the same directory as your
HTML, CSS, and JS files). Initially, the unfound Pokemon should have the additional class .unfound. These
Pokemon sprites will show up as black shadows with this class as opposed to the colored versions without.

For each “found” sprite added to the #pokedex-view, you will need to add an event handler so that when the
sprite is clicked, the card on the left is populated with that Pokemon’s data. You will retrieve this data using the
pokedex .php?pokemon=parameter request, passing the clicked Pokemon’s name as the parameter (you may
find it helpful to give each sprite an id with the Pokemon’s name). If a Pokemon with the class .unfound is
clicked, nothing should happen.

Card View

Once a found Pokemon is clicked, the card data for that Pokemon pop-
ulates the card on the left side of the page. This card is in a div with
the id of #my-card. You should use the returned JSON object from
the pokedex?pokemon=parameter request to populate the card with the
Pokemon's information, as explained below:

,
© Bulbasaur 200HP

A strange seed was planted on its back at

The “name” value should populate the #my-card .name heading bith. The pianf sprouts and grows with fhis
with the name of the Pokemon.

® Amnesia |
The “images” value is a collection of three folder paths, the first |
being “photo” to link to the Pokemon's photo (referenced by #my- -
card .pokepic), the second being “typeIcon” to link to the type © Magical leaf 60 0P |
icon of the Pokemon in the top-left corner (#my-card .type), and
the third being the “weaknessIcon" to link to the weakness type icon © Vine whip 45DP |

of the Pokemon in the bottom-left corner (#my-card .weakness). L

The “hp”, or health point value should populate the #my-card .hp
span positioned at the top-right corner of the card. You will need to append “HP” to the provided hp
value, as shown in the example card image to the right.

The “description” attribute should be used to populate the card with the Pokemon's description. The
description should be placed in the provided #my-card .info div.

The “moves” attribute includes data about the Pokemon's moves (between 1 and 4 moves, depending on
the Pokemon). You should populate only enough move buttons in #my-card .moves for the Pokemon's
move count. If there are fewer than four moves for a Pokemon, you should set the extra buttons to have
the class of .hidden so that they do not display visible on the card for that Pokemon. Any hidden moves
should be below the visible moves in the .moves div. Each move button should have its innerText set
to the provided move name, and its corresponding img icon set to have a src attribute of that move's
type (similar to how you did the type and weakness for the Pokemon). These type images will show to
the left of the move's name. The order of moves appended to a card does not matter, but you may find
it easiest to populate them based on the order they are returned in the moves array.

Finally, you should make visible the #start-btn once a user has clicked any of their discovered Pokemon. In
other words, the button should not be visible until the card is populated with a Pokemon's information.

Part 1l: Game View

Clicking the “Choose This Pokemon” button under the Pokemon card view should hide the #pokedex-view and
show the second player's card, #their-card, resulting in the view similar to that below (where “your” Pokemon
is chosen as Bulbasaur, and the opponent’s Pokemon is Ditto). You should also make the #results-container
div visible at this point, which will populate the center of the page with turn results for each move made.

Pokemon Battle Mode!

HP: - Player 1 played Magical Leaf and hit! HP: .

) Player 2 played Transform and hit!

r 4 A
@ Bulbasaur 80HP & Ditto 26HP
—
A strange seed was planted on its back at birth. The It can transform into anything. When it sleeps, it
plant sprouts and grows with this Pokemon. changes into a stone to avoid being attacked.
& Transform 40 DP I

@ Vine Whip 45 DP I
& Growl I
@ Amnesia I
@ Magical Leaf 60 DP I

& @

[Flee the Battle!]

To initialize the game, you will need to make a POST request to game.php with the POST parameters of
startgame=true and mypokemon=yourpokemonsname. This request will return the initial game state, including
data for your card and data for the opponent’s card. This request will also return unique guid (game ID) and
pid (player ID) values that you should store as module-global variables in your file. These values will be necessary
to play moves during the game. You will use this data to populate each card with image, stats, and move data
for each Pokemon. Note that you already should have the necessary data populated in your card, so won't
necessarily need to re-populate at this point. You will need to display your cards hidden .buffs div though for
visibility during the game, and make sure that your opponent’s card also has their .buffs div visible (both will
initially start with no buffs). Your opponent'’s card will be given as a random Pokemon (in the example output
image above, the random Pokemon is called Ditto), and should be populated with the data similar to how you
populated your card on the previous step. Note that there is quite a bit of redundancy here, so you should factor
out redundant DOM manipulation code as much as possible.

Game Play: Each move that you make has an effect on the game state which is handled by the server. All
you need to do to keep track of the game state is update the game with the data returned by the game.php
play move POST request. You should make this request whenever a user clicks on their Pokemon's moves, and
remove the .hidden class from the #loading image to display a loading animation while the request is being
processed. Once the request responds with the data successfully, this animation should become hidden again.
The returned game data includes a results array that provides the results of both Pokemon's moves (which
moves were played and whether they were a hit or miss) and you should display these in the #p1-turn-results
and #p2-turn-results divs in the #turn-results div in the center of the page, as shown in the above
example.

There are a few changes that may result from the updated game state, each of which you need to handle:

e Damage is dealt to your Pokemon and/or the opponent’s Pokemon: The returned game state
provides data about the current health of both Pokemon. You should update the health bar (the .health-
bar div on each card) to make its width a percentage of the max width, where the percentage is calculated
as current-hp / hp using these values from the returned JSON. If the percentage is less than 20%, the
health-bar should have a class of .low-health added to make it red (see image above for an example).
When the health is greater than or equal to 20% of the total health, it should never have a .1low-health
class (Pokemon may have healing moves, so you should remove this class if they're health rises above 20%
after having low health).

e Buffs: Some Pokemon have moves that apply “buffs” or "debuffs” to themselves or the opponent Pokemon.
Each card has a .buffs div where you will add or remove buffs. Each buff is a div with a class of either
.buff (an up arrow meaning helpful) or .debuff (a downward arrow meaning harmful). These divs will
also have one of three classes representing the type: attack, defense, and accuracy. Attack buffs .attack
are represented as red arrows, defense buffs .defense are represented as blue arrows, and accuracy buffs
.accuracy are represented as green arrows. The returned game state for each Pokemon has a buffs and
debuffs array with the number of stats for each listed as string values (see the APl documentation).

Winning/Losing: The game ends when one of the Pokemon has 0 hp points. You should append a message in
the #title as “You won!" or “You lost!" depending on the results of the game and then remove the .hidden
class to #endgame. Below is an example output after you have won the game:

You won!
HP: - Player 1 played Magical Leaf HP: |
and hit!
i N F '
@ Bulbasaur 40HP @ Dratini OHP
[Back to Pokedex]
I
‘___:\ _ﬁ
i i ks
— 4
A sfrange seed was planted on its back at Long considered a mythical Pokemon until
hirth. The plant sprouts and grows with this recently when a small colony was found fiving
Pokemon. undernvater.
@ Amnesia @ Dragon Dance
& Growl @ DragonRage 40DP
. Magical Leaf 60 DP @ Slam 80 DP
@ Vine Whip 45 DP & Water Gun 40 DP
@) L)

[Flee the Battle!

Som?

The #endgame button will appear in the center of the page when visible, just under the #title. You should
display #p1l-turn-results with the data populated in #pl-move and #pl-result, but if you were the last
one to make a move (e.g., your move causes P2's HP to go to 0 before they make a move), #p2-result and
#p2-move will be returned as empty strings. If this is the case, you should not display any message for P2's
move for this final turn in this case.

When clicked, the #endgame button should switch back to the Pokedex View and then become hidden again.
Whatever Pokemon you chose most-recently should populate #my-card, in case the user wants to use that
Pokemon again for a subsequent game. #start-btn should also be re-displayed after switching to the Pokedex
view at this point, and the #results-container should also be hidden.

If you win the game and the opponent has a Pokemon that you have not found, you may add it to your Pokedex
by adding it to your collection of found Pokemon (e.g., a module-global array of Pokemon, which started with
Bulbasaur, Charmander, and Squirtle). You should then remove the .unfound class from the associated Poke-
mon and add an onclick handler to allow it to be chosen for another game (similar to how you did with the three
starter Pokemon).

Fleeing: There is a button under your card during the game labeled “Flee the Battle". If clicked, this should
make a POST request to game.php with parameters move=flee, guid=yourguid, and pid=yourpid, where
the guid and pid are your unique game and player id values. This request will terminate your game and declare
your opponent as the winner by automatically setting your HP to 0. You should display a message as described
in the "lose case" above when your receive the response to playing this move. Note that your Pokemon will flee
immediately before the second player makes a move, so they will not have any move results returned (you should
not display any results for Player 2, just your flee move results).

Separate content (HTML), presentation (CSS), and behavior (JavaScript). Your JavaScript code should use
styles and classes from the CSS provided rather than manually setting each style property in the JavaScript. The
provided CSS file should have all of the classes required to achieve the desired output.

Your JavaScript code should pass our JSLint tool with no errors. Your . js file must run in strict mode by putting
"use strict"; within your module. Capture common operations as functions to keep code size and complexity
from growing. You can reduce your code size by using the this keyword in your event handlers.

No global variables or functions are allowed. To avoid globals, use the module pattern as taught in lecture,
wrapping your code in an anonymous function invocation. Even if you use the module pattern, limit the amount
of “module-global” variables to those that are truly necessary (we have given suggestions about those that you
will need); values should be local as much as possible. If a particular literal value is used frequently, declare it as
a module-global “constant” variable IN_UPPER_CASE and use the constant in your code.

Do not store DOM element objects, such as those returned by document .getElementById or
document . querySelectorAll, as module-global variables.

Your JavaScript code should follow the style guide and should have adequate commenting. The top of your
JavaScript file should have a descriptive comment header describing the assignment, and each function and
complex section of code should be documented. Format your code similarly to the examples from class. Properly
use whitespace and indentation. Use good variable and method names. Avoid lines of code more than 100
characters wide. For reference, our . js file has roughly 180 lines (120 “substantive”).

Do not place your solution on a public web site. Submit your own work and follow the course misconduct policy.

