
CSE 154: Web Programming Fall 2017

Homework 5 API Documentation

Overview
We have provided two web services for you two use on Homework 5: a Pokedex API and a Game Management
API. The Pokedex API provides data about each of the 151 Pokemon, including moves, type, and weakness.
Each type of query produces output in plain text or JSON format (You can test queries by typing in their URL
in your browser’s address bar and seeing the result). If you submit an invalid query, such as one missing a nec-
essary parameter, the request will return an HTTP error code of 400 (Invalid request) rather than the default 200.

The rest of this document provides the necessary information about the endpoints and query types for the requests
you will make for HW 5.

Pokedex API
Endpoint: https://webster.cs.washington.edu/pokedex/pokedex.php

The first web service, pokedex.php, provides data about each of the 151 Pokemon and accepts two different
types of “GET” queries, specified using a query string with a parameter.

Query 1: Get Pokemon Names
Request Format: pokedex.php?pokedex=all
Request Type: GET
Returned Data Format: plain text
Description: This first request takes the parameter all and returns a plain text response with all 151 Poke-
mon names and sprite image names, each on its own line. The Pokemon name is followed by its sprite image
name separated by a single “:”. These sprite image names correspond to the Pokemon’s sprite image in the
https://webster.cs.washington.edu/pokedex/sprites/ folder.
Request: https://webster.cs.washington.edu/pokedex/pokedex.php?pokedex=all
Output: (abbreviated)

1 Abra:abra.png
2 Aerodactyl:aerodactyl.png
3 Alakazam:alakazam.png
4 ...
5 Zubat:zubat.png

1

pokedex.php?pokedex=all
https://webster.cs.washington.edu/pokedex/pokedex.php?pokedex=all


Query 2: Get Pokemon Data
Request Format: pokedex.php?pokemon={name}
Request Type: GET
Returned Data Format: JSON
Description: The second request type takes as a parameter any Pokemon name and returns a detailed JSON
object containing data about this Pokemon. The returned data will be used to populate a card for that Pokemon.
Example Request: https://webster.cs.washington.edu/pokedex/pokedex.php?pokemon=pikachu
Example Output:

1 {
2 "name": "Pikachu",
3 "hp": 160,
4 "info": {
5 "id": "25",
6 "type": "electric",
7 "weakness": "ground",
8 "description": "Melissa's favorite Pokemon! When several Pikachu gather, their electricity could

build and cause lightning storms."
9 },

10 "images": {
11 "photo": "images/pikachu.jpg",
12 "typeIcon": "icons/electric.jpg",
13 "weaknessIcon": "icons/ground.jpg"
14 },
15 "moves": [
16 {
17 "name": "Growl",
18 "type": "normal"
19 },
20 {
21 "name": "Quick Attack",
22 "dp": 40,
23 "type": "normal"
24 },
25 {
26 "name": "Thunderbolt",
27 "dp": 90,
28 "type": "electric"
29 }
30 ]
31 }

The values of the returned JSON object include the name of the Pokemon (e.g., Pikachu), the type of the
Pokmeon (e.g., “electric”), its weakness type (e.g., “ground”), the health points, or hp (e.g., 80), the set of
images (photo for the main Pokemon image and typeIcon and weaknessIcon for the type and weakness icon
image paths, respectively), and the set of moves (each Pokemon has between 1 and 4 moves; Pikachu has 4).
Each move has a type, and moves that do damage have a “dp”, or damage point attribute. Moves that do not
have a “dp” attribute (e.g., Growl) affect stats of the player or opponent’s Pokemon, which is handled elsewhere
in the program (during the game mode).

2

pokedex.php?pokemon={name}
https://webster.cs.washington.edu/pokedex/pokedex.php?pokemon=pikachu


Game Management API
Endpoint: https://webster.cs.washington.edu/pokedex/game.php
The second web service, game.php, accepts two POST query types to initiate and update the state of a card game.

Query 3: Start Game
Request Format: game.php endpoint with POST parameters of startgame (set to true) and mypokemon
Request Type: POST
Returned Data Format: JSON
Description: The third request you will use initiates a game and passes two parameters, startgame and my-
pokemon to game.php. In contrast to the first two “GET” requests, this request is a “POST” request. Upon
success, the request returns a JSON response of the initial game state (with information for both players’ Poke-
mon) and unique game id (guid) and player id (pid) for the player to use to access and update the current game
state.
Example Request:
POST parameters of startgame=true and mypokemon=pikachu
Example Output:

1 {
2 "guid" : "game_12345abc",
3 "pid" : "player_cfe67890",
4 "p1" : {
5 "name" : "Pikachu",
6 "hp" : 160,
7 "current-hp" : 160,
8 "images" : {
9 "photo" : "images/pikachu.jpg",

10 "typeIcon" : "icons/electric.jpg",
11 "weaknessIcon" : "icons/ground.jpg"
12 },
13 "info": {
14 "id": "25",
15 "type": "electric",
16 "weakness": "ground",
17 "description": "Melissa's favorite Pokemon! When several Pikachu gather, their electricity could

build and cause lightning storms."
18 },
19 "moves": [
20 {
21 "name": "Growl",
22 "type": "normal"
23 },
24 {
25 "name": "Quick Attack",
26 "dp": 40,
27 "type": "normal"
28 },
29 {
30 "name": "Thunderbolt",
31 "dp": 90,
32 "type": "electric"
33 }
34 ],
35 "buffs": [],
36 "debuffs": []
37 },
38 "p2" : {
39 "name" : "Ditto",
40 "hp" : 206,

3

game.php


41 "current-hp" : 206,
42 "images": {
43 "photo": "images/ditto.jpg",
44 "typeIcon": "icons/normal.jpg",
45 "weaknessIcon": "icons/fighting.jpg"
46 },
47 "info": {
48 "id": "132",
49 "type": "normal",
50 "weakness": "fighting",
51 "description": "Duncan's favorite Pokemon (he has an awesome painting of Ditto on his wall). It can

transform into anything. When it sleeps, it changes into a stone to avoid being attacked."
52 },
53 "moves": [
54 {
55 "name": "Transform",
56 "dp": 40,
57 "type": "normal"
58 }
59 ],
60 "buffs": [],
61 "debuffs": []
62 }
63 }

You may assume that the guid and pid attributes returned are unique to the started game.

Query 4: Play a Move
Request Format: game.php endpoint with POST parameters of guid, pid, and movename
Request Type: POST
Returned Data Format: JSON
Description: This query submits a move played by your Pokemon on the current turn and requires three
parameters: move as your Pokemon’s move name, guid as your unique game ID, and pid as your unique player
id. The move name should be passed as an all-lowercase string, and if there are any spaces in the move name
(e.g., "Quick Attack"), they should be removed when passed as a parameter (e.g., "Quick Attack" would be
passed as "quickattack"). The game state is updated by applying that move’s effects to either player (depending
on the specific effects of the move). The request will also call the opponent’s move, which may update the health
or buffs of your Pokemon. Upon success, the request returns the current game state, including each player’s
current Pokemon status and the results of the two moves (yours and the opponents), as a JSON object.
An example return is given on the following page, where the guid provided is fictitious and you will need to
provide the one retrieved from the previous startgame request:

4

game.php


Example Request:
POST parameters of guid=game_12345abc, pid=player_cfe67890, and movename=quickattack
Example Output:

1 {
2 "guid" : "game_12345abc",
3 "results" : {
4 "p1-move" : "Thunderbolt",
5 "p2-move" : "Transform",
6 "p1-result" : "hit",
7 "p2-result" : "miss"
8 },
9 "p1" : {

10 "name" : "Pikachu",
11 "type" : "electric",
12 "weakness" : "ground",
13 "hp" : 80,
14 "current-hp" : 60,
15 "moves" : [
16 {
17 "name": "Brick Break",
18 "dp" : 75,
19 "type" : "fighting"
20 },
21 {
22 "name": "Growl",
23 "type" : "normal"
24 },
25 {
26 "name": "Quick Attack",
27 "dp" : 40,
28 "type" : "normal"
29 },
30 {
31 "name": "Thunder",
32 "dp" : 80,
33 "type" : "electric"
34 }
35 ],
36 "buffs" : [],
37 "debuffs" : []
38 },
39 "p2" : {
40 "name" : "Ditto",
41 "type" : "normal",
42 "weakness" : "fighting",
43 "hp" : 60,
44 "current-hp" : 20,
45 "moves" : [
46 {
47 "name": "Transform",
48 "dp" : 40,
49 "type" : "normal"
50 }
51 ],
52 "buffs" : [],
53 "debuffs" : ["attack", "attack"]
54 }
55 }

5


