
CSE 154
LECTURE 21: SESSIONS

Expiration / persistent cookies
setcookie("name", "value", expiration); PHP

$expireTime = time() + 60*60*24*7; # 1 week from now

setcookie("CouponNumber", "389752", $expireTime);

setcookie("CouponValue", "100.00", $expireTime); PHP

• to set a persistent cookie, pass a third parameter for when it should expire

• indicated as an integer representing a number of seconds, often relative to current
timestamp

• if no expiration passed, cookie is a session cookie; expires when browser is closed

• time function returns the current time in seconds

• date function can convert a time in seconds to a readable date

http://courses.cs.washington.edu/courses/cse154/14sp/lectures/slides/>http:/php.net/time
http://php.net/manual/en/function.date.php

Deleting a cookie
setcookie("name", FALSE); PHP

setcookie("CouponNumber", FALSE); PHP

• setting the cookie to FALSE erases it

• you can also set the cookie but with an expiration that is before the present
time:

setcookie("count", 42, time() - 1); PHP

• remember that the cookie will also be deleted automatically when it expires,
or can be deleted manually by the user by clearing their browser cookies

What is a session?
• session: an abstract concept to represent a series of HTTP requests and
responses between a specific Web browser and server
• HTTP doesn't support the notion of a session, but PHP does

• sessions vs. cookies:
• a cookie is data stored on the client
• a session's data is stored on the server (only 1 session per client)

• sessions are often built on top of cookies:
• the only data the client stores is a cookie holding a unique session ID
• on each page request, the client sends its session ID cookie, and the

server uses this to find and retrieve the client's session data

How sessions are established
• client's browser makes an initial request
to the server

• server notes client's IP address/browser,
stores some local session data, and sends
a session ID back to client (as a cookie)

• client sends that same session ID (cookie)
back to server on future requests

• server uses session ID cookie to retrieve
its data for the client's session later (like a
ticket given at a coat-check room)

Cookies vs. sessions
• duration: sessions live on until the user logs
out or closes the browser; cookies can live that
long, or until a given fixed timeout (persistent)

• data storage location: sessions store data on
the server (other than a session ID cookie);
cookies store data on the user's browser

• security: sessions are hard for malicious users
to tamper with or remove; cookies are easy

• privacy: sessions protect private information
from being seen by other users of your
computer; cookies do not

Implementing user logins
• many sites have the ability to create accounts and
log in users

• most apps have a database of user accounts

• when you try to log in, your name/pw are
compared to those in the database

Sessions in PHP: session_start
session_start(); PHP

• session_start signifies your script wants a session with the user
• must be called at the top of your script, before any HTML output is

produced
• when you call session_start:

• if the server hasn't seen this user before, a new session is created
• otherwise, existing session data is loaded into $_SESSION associative

array
• you can store data in $_SESSION and retrieve it on future pages

• complete list of PHP session functions

http://us.php.net/manual/en/ref.session.php

Accessing session data
$_SESSION["name"] = value; # store session data

$variable = $_SESSION["name"]; # read session data

if (isset($_SESSION["name"])) { # check for session data PHP

if (isset($_SESSION["points"])) {

$points = $_SESSION["points"];

print("You've earned $points points.\n");

} else {

$_SESSION["points"] = 0; # default

} PHP

• the $_SESSION associative array reads/stores all session data

• use isset function to see whether a given value is in the session

http://php.net/isset

Common session bugs
• session_start doesn't just begin a session; it also reloads any existing session for
this user. So it must be called in every page that uses your session data:

the user has a session from a previous page

print $_SESSION["name"]; # undefined

session_start();

print $_SESSION["name"]; # joe PHP

• previous sessions will linger unless you destroy them and regenerate the user's
session ID:

session_destroy();

session_regenerate_id(TRUE);

session_start(); PHP

Ending a session
session_destroy(); PHP

• session_destroy ends your current session
• potential problem: if you call session_start again later, it sometimes

reuses the same session ID/data you used before
• if you may want to start a completely new empty session later, it is best to

flush out the old one:

session_destroy();

session_regenerate_id(TRUE); # flushes out session

#ID number

session_start(); PHP

Session timeout
• because HTTP is stateless, it is hard for the server to know when a user has
finished a session

• ideally, user explicitly logs out, but many users don't

• client deletes session cookies when browser closes

• server automatically cleans up old sessions after a period of time

• old session data consumes resources and may present a security risk

• adjustable in PHP server settings or
with session_cache_expire function

• you can explicitly delete a session by calling session_destroy

http://php.net/manual/en/function.session-cache-expire.php
http://us.php.net/manual/en/function.session-destroy.php

