
CSE 154
LECTURE 14: INTRO TO PHP



URLs and web servers
http://server/path/file

• usually when you type a URL in your browser:
• your computer looks up the server's IP address using DNS
• your browser connects to that IP address and requests the given file
• the web server software (e.g. Apache) grabs that file from the server's local file 

system, and sends back its contents to you

• some URLs actually specify programs that the web server should run, and then send 
their output back to you as the result: 
https://webster.cs.washington.edu/cse190m/quote.php 

• the above URL tells the server webster.cs.washington.edu to run the 
program quote2.php and send back its output



Server-Side web programming

• server-side pages are programs written using one of many web programming 
languages/frameworks

◦ examples: PHP, Java/JSP, Ruby on Rails, ASP.NET, Python, Perl

• the web server contains software that allows it to run those programs and send back 
their output

• each language/framework has its pros and cons

◦ we will use PHP for server-side programming

http://php.net/
http://java.sun.com/products/jsp/
http://www.rubyonrails.org/
http://www.asp.net/
http://www.djangoproject.com/
http://www.cgi101.com/learn/


Why PHP?

There are many other options for server-side languages: Ruby on Rails, JSP, ASP.NET, etc. 

Why choose PHP?

• free and open source: anyone can run a PHP-enabled server free of charge

• compatible: supported by most popular web servers

• simple: lots of built-in functionality; familiar syntax

• available: installed on UW's servers (Dante, Webster) and most commercial web 
hosts

• well-documented: type php.net/functionName in browser Address bar to get 
docs for any function

http://www.php.net/


Lifecycle of a PHP web request

• browser requests a .html file (static content): server just sends that file
• browser requests a .php file (dynamic content): server reads it, runs any script code 

inside it, then



Console output: print
print "text";                                                PHP

print "Hello, World!\n";

print "Escape \"chars\" are the SAME as in Java!\n";

print "You can have

line breaks in a string.";

print 'A string can use "single-quotes".  It\'s cool!';              PHP

Hello, World! Escape "chars" are the SAME as in Java! You can have line breaks in a 

string. A string can use "single-quotes". It's cool!                                                   output

•some PHP programmers use the equivalent echo instead of print



Arithmetic Operations

• + - * / %
. ++ --
= += -= *= /= %= .=

• many operators auto-convert types: 5 + "7" is 12



Variables
$name = expression;                                         PHP

$user_name = "PinkHeartLuvr78";

$age = 16;

$drinking_age = $age + 5;

$this_class_rocks = TRUE;                                    PHP

• names are case sensitive; separate multiple words with _

• names always begin with $, on both declaration and usage

• implicitly declared by assignment (type is not written; a "loosely typed" language)



Types
• basic types: int, float, boolean, string, array, object, NULL

• test what type a variable is with is_type functions, e.g. is_string

• gettype function returns a variable's type as a string (not often needed)

• PHP converts between types automatically in many cases:

• string→ int auto-conversion on + ("1" + 1 == 2)

• int→ float auto-conversion on / (3 / 2 == 1.5)

• type-cast with (type):

• $age = (int) "21";

http://www.php.net/manual/en/language.types.integer.php
http://www.php.net/manual/en/language.types.float.php
http://www.php.net/manual/en/language.types.boolean.php
http://www.php.net/manual/en/language.types.string.php
http://www.php.net/manual/en/language.types.array.php
http://www.php.net/manual/en/language.types.object.php
http://www.php.net/manual/en/language.types.null.php
http://www.php.net/manual/en/function.is-string.php
http://www.php.net/gettype
http://www.php.net/language.types.type-juggling


String type
$favorite_food = "Ethiopian";

print $favorite_food[2];            # h                  PHP

• zero-based indexing using bracket notation

• string concatenation operator is . (period), not +
• 5 + "2 turtle doves" produces 7
• 5 . "2 turtle doves" produces "52 turtle doves“

• can be specified with "" or ' '



String functions
# index  0123456789012345

$name = “Austin Weale";

$length = strlen($name);              # 16

$cmp = strcmp($name, “Linda Guo");    # > 0

$index = strpos($name, “s");          # 2

$first = substr($name, 7, 4);         # “Weal"

$name = strtoupper($name);            # “AUSTIN WEALE“       PHP

Name Java Equivalent

strlen length

strpos indexOf

substr substring

strtolower, strtoupper toLowerCase, toUpperCase

trim trim

explode, implode split, join

http://www.php.net/manual/en/function.strlen.php
http://www.php.net/manual/en/function.strpos.php
http://www.php.net/manual/en/function.substr.php
http://www.php.net/manual/en/function.strtolower.php
http://www.php.net/manual/en/function.strtoupper.php
http://www.php.net/manual/en/function.trim.php
http://www.php.net/manual/en/function.explode.php
http://www.php.net/manual/en/function.implode.php


Interpreted strings
$age = 16;

print "You are " . $age . " years old.\n";

print "You are $age years old.\n";    # You are 16 years old. PHP

• strings inside " " are interpreted
• variables that appear inside them will have their values inserted into the string

• strings inside ' ' are not interpreted:

print 'You are $age years old.\n';  # You are $age years old.\n PHP

• if necessary to avoid ambiguity, can enclose variable in {}:

print "Today is your $ageth birthday.\n"; # $ageth not found

print "Today is your {$age}th birthday.\n";                      PHP



bool (Boolean) type
$feels_like_summer = FALSE;

$php_is_rad = TRUE;

$student_count = 217;

$nonzero = (bool) $student_count;     # TRUE                PHP

• the following values are considered to be FALSE (all others are TRUE):
• 0 and 0.0
• "", "0", and NULL (includes unset variables)
• arrays with 0 elements

• can cast to boolean using (bool)
• FALSE prints as an empty string (no output); TRUE prints as a 1



for loop

for (initialization; condition; update) {

statements;

}                                                  PHP

for ($i = 0; $i < 10; $i++) {

print "$i squared is " . $i * $i . ".\n";

}                                                  PHP



if/else statement
if (condition) {

statements;

} else if (condition) {

statements;

} else {

statements;

}                                                      PHP

• can also say elseif instead of else if



while loop (same as Java)
while (condition) {

statements;

}                                                            PHP

do {

statements;

} while (condition);                                         PHP

• break and continue keywords also behave as in Java

http://www.php.net/manual/en/control-structures.break.php
http://www.php.net/manual/en/control-structures.continue.php


Comments
# single-line comment

// single-line comment

/*

multi-line comment

*/                                                              PHP

• like Java, but # is also allowed
• a lot of PHP code uses # comments instead of //
• we recommend # and will use it in our examples


