
CSE 154
LECTURE 19: FORMS AND UPLOADING FILES

Exercise: Baby name web service JSON
• Modify our babynames.php service to produce its output as JSON. For the data:

Morgan m 375 410 392 478 579 507 636 499 446 291 278 332 518

• The service should output the following JSON:

{

"name": "Morgan",

"gender": "m",

"rankings": [375, 410, 392, 478, 579, 507, 636, 499, 446, 291, 278,

332, 518]

} JSON

Emitting JSON data manually
...

header("Content-type: application/json");

print "{\n";

print " \"books\": [\n";

foreach ($books as $book) {

print " {\"author\": \"{$book['author']}\", \"title\":

\"{$book['title']}\"}\n";

}

print "\n";

• specify a content type of application/json
• messy, just like when manually printing XML (not recommended)

PHP's JSON functions
PHP includes the following global functions for interacting with JSON data:

json_decode(string) parses the given JSON data string and returns an equivalent
associative array object (like JSON.parse in JavaScript)

json_encode(object) returns JSON equivalent for the given object or array or value
(like JSON.stringify in JavaScript)

• json_encode will output associative arrays as objects and normal arrays as arrays

http://www.php.net/manual/en/function.json-decode.php
http://www.php.net/manual/en/function.json-encode.php

PHP JSON example
<?php

$data = array(

"library" => "Odegaard",

"category" => "fantasy",

"year" => 2012,

"books" => array(

array("title" => "Harry Potter", "author" => "J.K. Rowling"),

array("title" => "The Hobbit", "author" => "J.R.R. Tolkien"),

array("title" => "Game of Thrones", "author" => "George R. R. Martin"),

array("title" => "Dragons of Krynn", "author" => "Margaret Weis"),

)

);

header("Content-type: application/json");

print json_encode($data);

?> PHP

PHP JSON example - output
{

"library": "Odegaard",

"category": "fantasy",

"year": 2012,

"books": [

{"title": "Harry Potter", "author": "J.K. Rowling"},

{"title": "The Hobbit", "author": "J.R.R. Tolkien"},

{"title": "Game of Thrones", "author": "George R. R. Martin"},

{"title": "Dragons of Krynn", "author": "Margaret Weis"},

]

} JSON

HTML forms

• form: a group of UI controls that accepts
information from the user and sends the
information to a web server

• the information is sent to the server as a
query string

• JavaScript can be used to create interactive
controls (seen later)

HTML form: <form>
<form action="destination URL">

form controls

</form> HTML

• required action attribute gives the URL of the page that will process this
form's data

• when form has been filled out and submitted, its data will be sent to the
action's URL

• one page may contain many forms if so desired

Reset buttons
Name: <input type="text" name="name" />

Food: <input type="text" name="meal" value="pizza" />

<label>Meat? <input type="checkbox" name="meat" /></label>

<input type="reset" /> HTML

output

• when clicked, returns all form controls to their initial values

• specify custom text on the button by setting its value attribute

Hidden input parameters
<input type="text" name="username" /> Name

<input type="text" name="sid" /> SID

<input type="hidden" name="school" value="UW" />

<input type="hidden" name="year" value="2048" /> HTML

• an invisible parameter that is still passed to the server when form is
submitted

• useful for passing on additional state that isn't modified by the user

output

Form POST example
<form action="http://foo.com/app.php" method="post">

<div>

Name: <input type="text" name="name" />

Food: <input type="text" name="meal" />

<label>Meat? <input type="checkbox" name="meat" /></label>

<input type="submit" />

<div>

</form> HTML

output

The htmlspecialchars function

• text from files / user input / query params might contain <, >, &, etc.

• we could manually write code to strip out these characters

• better idea: allow them, but escape them

htmlspecialchars returns an HTML-escaped version of a string

$text = "<p>hi 2 u & me</p>";

$text = htmlspecialchars($text); # "<p>hi 2 u & me</p>"

http://www.php.net/htmlspecialchars

Uploading files
<form action="http://webster.cs.washington.edu/params.php"

method="post" enctype="multipart/form-data">

Upload an image as your avatar:

<input type="file" name="avatar" />

<input type="submit" />

</form> HTML

• add a file upload to your form as an input tag with type of file

• must also set the enctype attribute of the form

output

Processing an uploaded file in PHP
• uploaded files are placed into global array $_FILES, not $_POST

• each element of $_FILES is itself an associative array, containing:

• name : the local filename that the user uploaded

• type : the MIME type of data that was uploaded, such as image/jpeg

• size : file's size in bytes

• tmp_name : a filename where PHP has temporarily saved the uploaded file

• to permanently store the file, move it from this location into some other file

Uploading details
<input type="file" name="avatar" /> HTML

• example: if you upload borat.jpg as a parameter named avatar,

• $_FILES["avatar"]["name"] will be "borat.jpg"
• $_FILES["avatar"]["type"] will be "image/jpeg"
• $_FILES["avatar"]["tmp_name"] will be something like

"/var/tmp/phpZtR4TI"

output

Processing uploaded file, example
$username = $_POST["username"];

if (is_uploaded_file($_FILES["avatar"]["tmp_name"])) {

move_uploaded_file($_FILES["avatar"]["tmp_name"],

"$username/avatar.jpg");

print "Saved uploaded file as $username/avatar.jpg\n";

} else {

print "Error: required file not uploaded";

} PHP

• functions for dealing with uploaded files:
• is_uploaded_file(filename)
• returns TRUE if the given filename was uploaded by the user
• move_uploaded_file(from, to)
• moves from a temporary file location to a more permanent file

• proper idiom: check is_uploaded_file, then do move_uploaded_file

