
CSE 154
LECTURE 13: XML AND JSON

Schemas and Doctypes
• "rule books" describing which tags/attributes you want to allow in your data

• used to validate XML files to make sure they follow the rules of that "flavor"

• the W3C HTML validator uses an HTML schema to validate your HTML (related
to <!DOCTYPE html> tag)

• these are optional; if you don't have one, there are no rules beyond having well-
formed XML syntax

• for more info:

• W3C XML Schema

• Document Type Definition (DTD) ("doctype")

http://en.wikipedia.org/wiki/XML_Schema_(W3C)
http://en.wikipedia.org/wiki/Document_Type_Definition

Exercise: Late day distribution

• Write a program that shows how many students turn homework in late for each
assignment.

• Data service
here: http://webster.cs.washington.edu/cse154/services/hw/hw.php
• parameter: assignment=hwN

http://webster.cs.washington.edu/cse154/services/hw/hw.php

An example of XML data
<?xml version="1.0" encoding="UTF-8"?>

<note private="true">

<from>Alice Smith (alice@example.com)</from>

<to>Robert Jones (roberto@example.com)</to>

<to>Charles Dodd (cdodd@example.com)</to>

<subject>Tomorrow's "Birthday Bash" event!</subject>

<message language="english">

Hey guys, don't forget to call me this weekend!

</message>

</note> XML

• fairly simple to read and understand
• can be parsed by JavaScript code using XML DOM

• Is there any other data format that is more natural for JS code to process?

JavaScript Object Notation (JSON)
JavaScript Object Notation (JSON): Data format that
represents data as a set of JavaScript objects

• invented by JS guru Douglas Crockford of Yahoo!

• natively supported by all modern browsers (and
libraries to support it in old ones)

• not yet as popular as XML, but steadily rising due to its
simplicity and ease of use

http://www.crockford.com/

Background: Creating a new object
var name = {

fieldName: value,

...

fieldName: value

}; JS

var pt = {

x: 4,

y: 3

};

pt.z = -1;

alert("(" + pt.x + ", " + pt.y + ", " + pt.z + ")"); // (4, 3, -1)

• in JavaScript, you can create a new object without creating a class
• you can add properties to any object even after it is created (z)

More about JavaScript object syntax
var person = {

name: "Philip J. Fry", // string

age: 23, // number

"weight": 172.5, // number

friends: ["Farnsworth", "Hermes", "Zoidberg"], // array

getBeloved: function() { return this.name + " loves Leela"; }

};

alert(person.age); // 23

alert(person["weight"]); // 172.5

alert(person.friends[2])); // Zoidberg

alert(person.getBeloved()); // Philip J. Fry loves Leela

• an object can have methods (function properties) that refer to itself as this
• can refer to the fields with .fieldName or ["fieldName"] syntax
• field names can optionally be put in quotes (e.g. weight above)

Repeated: Example XML data
<?xml version="1.0" encoding="UTF-8"?>

<note private="true">

<from>Alice Smith (alice@example.com)</from>

<to>Robert Jones (roberto@example.com)</to>

<to>Charles Dodd (cdodd@example.com)</to>

<subject>Tomorrow's "Birthday Bash" event!</subject>

<message language="english">

Hey guys, don't forget to call me this weekend!

</message>

</note> XML

• Could we express this message data as a JavaScript object?

• Each attribute and tag could become a property or sub-object within the overall
message object

The equivalant JSON data
{

"private": "true",

"from": "Alice Smith (alice@example.com)",

"to": [

"Robert Jones (roberto@example.com)",

"Charles Dodd (cdodd@example.com)"

],

"subject": "Tomorrow's \"Birthday Bash\" event!",

"message": {

"language": "english",

"text": "Hey guys, don't forget to call me this weekend!"

}

} JSON

Valid JSON
var student = { // no variable assignment

"first_name": 'Bart', // strings must be double-quoted

last_name: "Simpson", // property names must be quoted

"birthdate": new Date("April 1, 1983"), // Date objects not supported

"enroll": function() { // Functions not supported

this.enrolled = true;

}

}; JSON

• JSON has a few rules that differ from regular JS:
• Strings must be quoted (in JS, single- or double-quoted are allowed)
• All property/field names must be quoted
• Unsupported types: Function, Date, RegExp, Error
• All others supported: Number, String, Boolean, Array, Object, null

• Numerous validators/formatters available: JSONLint, JSON Formatter &
Validator, Free Formatter, JSON Validator

http://jsonlint.com/
http://jsonformatter.curiousconcept.com/
http://www.freeformatter.com/json-validator.html
http://paulisageek.com/json_validator/

Browser JSON methods
method description

JSON.parse(string) converts the given string of JSON data into an equivalent
JavaScript object and returns it

JSON.stringify(object) converts the given object into a string of JSON data (the
opposite of JSON.parse)

• you can use Ajax to fetch data that is in JSON format
• then call JSON.parse on it to convert it into an object
• then interact with that object as you would with any other JavaScript object

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/JSON/stringify

JSON expressions exercise
Given the JSON data at right, what
expressions would produce:
• The window's title? (use the

Console)
• The image's third coordinate?
• The number of messages?
• The y-offset of the last message?

var data = JSON.parse(this.responseText);

{

"window": {

"title": "Sample Widget",

"width": 500,

"height": 500

},

"image": {

"src": "images/logo.png",

"coords": [250, 150, 350, 400],

"alignment": "center"

},

"messages": [

{"text": "Save", "offset": [10, 20]},

{"text": "Help", "offset": [0, 50]},

{"text": "Quit", "offset": [30, 15]}

],

"debug": "true"

} JSON

var title = data.window.title;

var coord = data.image.coords[2];

var len = data.messages.length;

var y = data.messages[len - 1].offset[1];

JSON example: Books
Suppose we have a service books_json.php about library books.
• If no query parameters are passed, it outputs a list of book categories:

{ "categories": ["computers", "cooking", "finance", ...] } JSON

• Supply a category query parameter to see all books in one category:
http://webster.cs.washington.edu/services/books/books_json.php?category=cooking

{

"books": [

{"category": "cooking", "year": 2009, "price": 22.00,

"title": "Breakfast for Dinner", "author": "Amanda Camp"},

{"category": "cooking", "year": 2010, "price": 75.00,

"title": "21 Burgers for the 21st Century", "author": "Stuart Reges"},

...

]

} JSON

http://webster.cs.washington.edu/books_json.php
http://webster.cs.washington.edu/services/books/books_json.php?category=cooking

JSON exercise
Write a page that processes this JSON book data.
• Initially the page lets the user choose a category, created from the JSON data.

• After choosing a category, the list of books in it appears:

Books in category "Cooking":
 Breakfast for Dinner, by Amanda Camp (2009)
 21 Burgers for the 21st Century, by Stuart Reges (2010)
 The Four Food Groups of Chocolate, by Victoria Kirst (2005)

Bad style: the eval function
// var data = JSON.parse(this.responseText);

var data = eval(this.responseText); // don't do this!

... JS

• JavaScript includes an eval keyword that takes a string and runs it as code
• this is essentially the same as what JSON.parse does,
• but JSON.parse filters out potentially dangerous code; eval doesn't
• eval is evil and should not be used!

