
University of Washington, CSE 154 
Homework Assignment 3: Speedreader 

Special thanks to Peter-Michael Osera of  University of  Pennsylvania, Marty Stepp of  Stanford and Jessica Miller 
 

This assignment tests your understanding of  JavaScript and its interaction with HTML user interfaces. 
You must match the appearance and behavior of  the following web page: 

 
Everyone wishes they could read faster. One method for doing so is called Rapid Serial Visual Presentation (RSVP). 
RSVP is based on three observations: 

1. Using your finger or some other pointing device to train your eyes and focus while reading increases speed. 

2. Eliminating subvocalization, internally speaking words while reading them, can dramatically increase your 
reading speed.  

3. Speed reading skills rely on the reader’s discipline to develop good reading habits, and it is easy for a reader 
to learn "the wrong way" and thus never see the purported benefits of  speed reading.  

Computer programs are a great help in this area as they force readers to accurately do one and two while avoiding 
three. RSVP programs do this by presenting words to the reader in quick succession. Therefore, the reader is only 
able to focus on a single word at a time. And furthermore, the words appear at such a speed that the reader is unable 
to subvocalize like normal.  

Your first task is to create a page speedreader.html with a user interface (UI) for speed reading.  No skeleton files 
are provided.  Your page should link to a style sheet you'll write named speedreader.css for styling the page.  After 
creating your page, you must make the UI interactive by writing JavaScript code in speedreader.js so that clicking the 
UI controls causes appropriate behavior.  Your HTML page should link to your JS file in a script tag. 

In total you will turn in the following files: 

• speedreader.html, your web page 
• speedreader.css, the style sheet for your web page 
• speedreader.js, the JavaScript code for your web page 

Our screenshots were taken on Windows in Firefox, which may differ from your system. 
 



Appearance Details: 
The page should have a title of  SpeedReader centered horizontally.  The overall page has a background color of  
#EAF6F6. The preferred font for all text on the page is Garamond in size 12pt. If  that is not available it should use 
the default serif  font available on the system. 

Under the page's heading is a div with a width of  80% and a height of  100px, centered horizontally. It uses a 36pt 
bold font initially, has the system default monospace font and has a line height of  100px.  It is surrounded by a solid 
2px wide border in #8EBEBE with 5px curved corners. Its background color is #FFFFFF. Text inside it should be 
centered. 

Below the div is a set of  controls grouped into several field sets with a label on top of  each.  The labels should be 
bold, aligned left, have a bottom border of  solid line 1px thick in #8EBEBE. They should be 100% wide and have 
2px of  space between the label and where the label’s border would be on all sides.  

The first three field sets should appear in one line, the last on the line below. To get the field sets to appear in a row 

horizontally, see textbook Chapter 4's section about Element Visibility and the display property.  You should make 
sure that the tops of  the field sets line up by setting their vertical alignment.  The field sets are centered horizontally.  

The last field set, that should appear on its own line, contains a text box. This text box should have 10 rows and 80 
columns. It should have a solid gray border 1px wide. It should have a background of  #FFFFFF. 

Some of  the controls contain buttons. These buttons should have a white background and a solid gray border 1px 
wide. They should be 70px wide. When they are disabled their background color should be lightgray.  

Below the controls is a left-aligned section with images that are links to the W3C validators and our own JSLint tool.  
Each image should be 70px wide. These images should remain 5px from the bottom left corner no matter how the 
page is resized. The three images are found at the following URLs: 

Image: Links to: 

https://webster.cs.washington.edu/images/w3c-html-blue.png https://webster.cs.washington.edu/validate-html.php 
https://webster.cs.washington.edu/images/w3c-css-blue.png https://webster.cs.washington.edu/validate-css.php 
https://webster.cs.washington.edu/images/w3c-js-blue.png https://webster.cs.washington.edu/jslint/?referer 
 

Behavior Details: 
The following are the groups of  controls at the bottom of  the page and each control's behavior. 
 

Play Controls: 
Start: When clicked, word display animation begins. Each frame of  animation is a single word. Separate words on 
white space (spaces, tabs and new lines). You can do this by using the following method call: 

var result = yourString.split(/[ \t\n]+/); 

Replace yourString with whatever you would like to split on white space.  

If  a word ends with a piece of  punctuation (comma, period, exclamation point, question mark, semicolon or colon) 
the punctuation should be removed and that word should be displayed for twice the normal amount of  time (hint: 
have a list of  frames to display and add this frame twice in a row). You should only remove the last piece of  
punctuation if  there are multiple in a row.  

When animation starts, whatever text is currently in the text box is broken apart to produce frames of  animation as 
described above.  These are displayed in the div. By default, the word changes once every 171ms.  When the 
animation reaches the last word, it should stop. 

(For full credit, you must implement your animation using a JavaScript timer with the setInterval function.) 

Stop: When clicked, halts any animation in progress.  When animation is stopped, the div should become blank.   

Font Size: 
Contains three radio buttons labeled "Medium", "Big", and "Bigger". When one of  the buttons (or the text next to 
it) is clicked, causing the box to become checked, it immediately sets the font size in the div.   

Initially Medium is selected and the text is 36pt in size. If  Big is selected the text should be 48pt and if  Bigger is 
selected it should be 60pt. If  the animation is playing and one of  these buttons is clicked, the font size changes 



immediately. 

 

Speed: 
A drop-down list of  speeds. When one of  the speeds is chosen, it immediately sets the speed in the div. The speed 
listed in the drop-down list, and the corresponding speed to set, are:  

 • 50 wpm (500ms), 300 wpm (200ms), 350 wpm (171ms), 400 wpm (150ms), 450 wpm (133ms), 500 wpm (120ms) 

If  the animation is playing and a different speed is selected, the change should take effect immediately (the user 
shouldn't have to stop and restart the animation to see the change).  Selecting the timing shouldn't cause the 
animation to start if  it wasn't already started.  It also shouldn't reset what frame is showing; it should just change the 
delay immediately. 350 wpm should initially be selected. 

Note that when you write the code for changing the speed, it is easy to introduce redundancy.  By setting a value 
attribute on each of  the options in the drop-down list, you can avoid a long series of  if/else statements. 

Control Enabling/Disabling: 
Modify your GUI to disable elements that the user shouldn't be able to click at a given time.  Initially and whenever 
animation is not in progress, the Stop button should be disabled.  When an animation is in progress, the Start button 
and the text area should be disabled. The Size radio buttons and the Speed box should always be enabled. 

Enable or disable a control with its disabled property.  For example, to disable a control with id of  
customerlist: 

document.getElementById("customerlist").disabled = true; 

Development Strategy and Hints: 
1. Write the basic HTML content including the proper UI controls.  

2. Write your CSS code to achieve the proper layout. 

3. Write a small amount of  "starter" JS code and make sure that it runs. 

(For example, make it so that when the Start button is clicked, an alert box appears.) 

4. Implement code to change the animation text and font sizes.  Make it so that when an option is chosen in 
the selection box, the proper text string appears in the div.  Get the font size options working. 

5. Implement a minimal Start behavior so that when Start is clicked, a single frame of  animation is shown. 
Clicking Start multiple times would show successive frames of  animation. 

6. Use a JavaScript timer to implement the proper animation based on your previous code. 
7. Get rid of  punctuation and add longer delays at the ends of  sentences and at commas.  

We strongly recommend that you install and use the Firebug add-on for Firefox on this assignment, or use the 
similar tool built into other browsers such as Chrome.  Both show syntax errors in your JavaScript code.  You can 
use either as a debugger, set breakpoints, type expressions on the Console, and watch variables' values.  This is 
essential for serious JavaScript programming. 

Our JSLint tool can help you find common JavaScript bugs.  Since this is your first JavaScript program, you will 
probably encounter tricky bugs.  If  so, paste your code into JSLint to look for possible errors or warnings.  For full 
credit, your JavaScript code must pass the provided JSLint tool with no errors reported.  ("Warnings" are okay.) 

For full credit, your .js file must be written in JavaScript "strict" mode by putting this exact line of  code at the top: 

"use strict"; 
 

Implementation and Grading: 
Submit your assignment online from the course web site.  All of  your HTML, CSS, and JavaScript code should 
follow the style guide posted on the class web site. 

Implement your page using HTML5 as taught in class.  Your page must pass the W3C HTML5 validator.  Choose 
appropriate tags to match the structure of  the page content.  Do not express style information in the HTML page 
itself, such as inline styles or presentational HTML tags such as b or font.  Use unobtrusive JavaScript so that no 



JavaScript code, onclick handlers, etc. are embedded into the HTML code. 

Express all stylistic information on the page in CSS using your style sheet file.  For full credit, your style sheet must 
successfully pass the W3C CSS validator.  You should not use HTML or CSS constructs that have not been 
discussed in lecture, slides, or textbook chapters during the first three weeks of  the course. 

Format your HTML, CSS, and JS to be readable, like to the examples in class. Place a comment header atop each 
HTML/CSS/JS file.  Your JavaScript should have more descriptive comments, including a header on each function 
(including anonymous) and complex sections of  code describing the relevant code, the function's behavior, etc. 

You should follow reasonable style guidelines similar to those of  a CSE 14x programming assignment.  In particular, 
avoid redundant code, and use parameters and return values properly. 

Minimize the use of  global variables.  Do not ever store DOM element objects, such as those returned by the 

document.getElementById function, as global variables.  As a reference, our own solution has four global 
variables, mostly related to the set of  frames to draw, which frame is currently displayed, the delay between frames, 
and so on. 

Format your code similarly to the examples from class.  Properly use whitespace and indentation.  In your HTML, 
do not place more than one block element on a line or begin a block element past the 100th character.  In your 
JavaScript, properly space/indent your code, and do not write any lines of  code longer than 100 characters. 

You should not use any external JavaScript frameworks or libraries such as jQuery to solve this assignment. 

Do not place a solution to this assignment on a public web site.  Upload your files to the Webster server at: 

• https://webster.cs.washington.edu/students/your_uwnetid/hw3/speedreader.html 

 

Extra feature 

For one extra late day implement the following extra feature. 

Another thing that can really help a speed reader be effective is centering the word around a specific letter in relation 
to its length and coloring that letter differently so that it easily maintains the reader’s focus. Use the following central 
letter choices:  

length = 0-1 -> first letter 
length = 2-5 -> second letter 
length = 6-9 -> third letter 
length = 10-13 -> fourth letter 
length >13 -> fifth letter 

hint: add extra spaces to the shorter side of  the word to make sure the colored character is always the central 
character. Usually the beginning of  the word will be shorter however in 2 letter long words the end will be shorter. 
You may find &nbsp (a space that doesn’t get compressed into a single space) useful.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Copyright © Allison Obourn, Linda Guo, Colin Miller, licensed under Creative Commons Attribution 2.5 License.  All rights reserved. 


