
CSE 154
LECTURE 23: XML

Storing structured data in arbitrary text
formats (bad)
My note:

BEGIN

FROM: Alice Smith (alice@example.com)

TO: Robert Jones (roberto@example.com)

SUBJECT: Tomorrow's "Birthday Bash" event!

MESSAGE (english):

Hey Bob,

Don't forget to call me this weekend!

PRIVATE: true

END XML

• Many apps make up their own custom text format for storing structured data.
• We could also send a file like this from the server to browser with Ajax.
• What's wrong with this approach?

XML: A better way of storing data
<?xml version="1.0" encoding="UTF-8"?>

<note private="true">

<from>Alice Smith (alice@example.com)</from>

<to>Robert Jones (roberto@example.com)</to>

<subject>Tomorrow's "Birthday Bash" event!</subject>

<message language="english">

Hey Bob, Don't forget to call me this weekend!

</message>

</note> XML

• eXtensible Markup Language (XML) is a format for storing nested data with tags
and attributes

• essentially, it's HTML, but you can make up any tags and attributes you want
• lots of existing data on the web is stored in XML format

http://www.usgovxml.com/

Anatomy of an XML file
<?xml version="1.0" encoding="UTF-8"?> <!-- XML prolog -->

<note private="true"> <!-- root element -->

<from>Alice Smith (alice@example.com)</from>

<to>Robert Jones (roberto@example.com)</to>

<subject>Tomorrow's "Birthday Bash" event!</subject>

<message language="english">

Hey Bob, Don't forget to call me this weekend!

</message>

</note> XML

• begins with an <?xml ... ?> header tag (prolog)
• has a single root element (in this case, note)
• tag, attribute, and comment syntax is just like HTML

Uses of XML

• XML data comes from many sources on the web:

• web servers store data as XML files

• databases sometimes return query results as XML

• web services use XML to communicate

• XML is the de facto universal format for exchange of data

• XML languages are used for music, math, vector graphics

• popular use: RSS for news feeds & podcasts

http://en.wikipedia.org/wiki/MusicXML
http://en.wikipedia.org/wiki/MathML
http://en.wikipedia.org/wiki/SVG
http://en.wikipedia.org/wiki/RSS

What tags are legal in XML?

• any tags you want! examples:

• a library might use
tags book, title, author

• a song might use tags key, pitch, note

• when designing XML data, you choose how to
best represent the data

• large or complex pieces of data become tags

• smaller details and metadata with simple
types (integer, string, boolean) become
attributes

<measure number="1">

<attributes>

<divisions>1</divisions>

<key><fifths>0</fifths></key>

<time><beats>4</beats></time>

<clef>

<sign>G</sign><line>2</line>

</clef>

</attributes>

<note>

<pitch>

<step>C</step>

<octave>4</octave>

</pitch>

<duration>4</duration>

<type>whole</type>

</note>

</measure> XML

XML and Ajax
• web browsers can display XML files, but often you instead want to fetch

one and analyze its data
• the XML data is fetched, processed, and displayed using Ajax

• (XML is the "X" in "Ajax")
• It would be very clunky to examine a complex XML structure as just a giant

string!
• luckily, the browser can break apart (parse) XML data into a set of objects

• there is an XML DOM, similar to the HTML DOM

Fetching XML using Ajax (template)
var ajax = new XMLHttpRequest();

ajax.onload = functionName;

ajax.open("GET", url, true);

ajax.send();

...

function functionName() {

do something with this.responseXML;

} XML

• this.responseText contains the data in plain text (a string)
• this.responseXML is a parsed XML DOM tree object

• it has methods very similar to HTML DOM objects

Interacting with XML DOM nodes
To get an array of nodes:

var elms = node.getElementsByTagName("tag");

var elms = node.querySelectorAll("selector"); // all elements

var elm = node.querySelector("selector"); // first element XML

To get the text inside of a node:

var text = node.textContent; // or,

var text = node.firstChild.nodeValue; XML

To get the value of a given attribute on a node:

var attrValue = node.getAttribute("name"); XML

Differences from HTML DOM
Don't usually use getElementById because XML nodes don't have IDs or classes.

var div = document.getElementById("main"); JS

Can't get/set the text inside of a node using innerHTML:

var text = div.innerHTML; JS

Can't get an attribute's value using .attributeName:

var imageUrl = document.getElementById("myimage").src; JS

Ajax XML DOM example
<?xml version="1.0" encoding="UTF-8"?>

<employees>

<lawyer money="99999.00" />

<janitor name="Ed"> <vacuum model="Hoover" /> </janitor>

<janitor name="Bill">no vacuum, too poor</janitor>

</employees> XML

// how much money does the lawyer make?

var lawyer = this.responseXML.querySelector("lawyer");

var salary = parseFloat(lawyer.getAttribute("money")); // 99999.0

// array of 2 janitors

var janitors = this.responseXML.querySelectorAll("janitor");

var vacModel = janitors[0].querySelector("vacuum").getAttribute("model");

var excuse = janitors[1].textContent; // "no vacuum, too poor"

• How would we find out the first janitor's name? (use the Console)
• How would we find out how many janitors there are?
• How would we find out how many janitors have vs. don't have vacuums?

Exercise: Animal game

• Write a program that guesses which animal the user is thinking of. The program will
arrive at a guess based on the user's responses to yes or no questions. The questions
come from a web app named animalgame.php.

http://webster.cs.washington.edu/cse154/animalgame.php?nodeid=1

Practice problem: Animal game (cont'd)
The data comes in the following format:

<node nodeid="id">

<question>question text</question>

<yes nodeid="id" />

<no nodeid="id" />

</node> XML

<node nodeid="id">

<answer>answer text</answer>

</node> XML

• to get a node with a given id: animalgame.php?nodeid=id

• start by requesting the node with nodeid of 1 to get the first question

Attacking the problem

• Questions we should ask ourselves:

• How do I retrieve data from the web app? (what URL, etc.)

• Once I retrieve a piece of data, what should I do with it?

• When the user clicks "Yes", what should I do?

• When the user clicks "No", what should I do?

• How do I know when the game is over? What should I do in this case?

Debugging responseXML in Firebug

• can examine the entire XML document, its node/tree structure

Full list of XML DOM properties

• properties:
• nodeName, nodeType, nodeValue, attributes
• firstChild, lastChild, childNodes, nextSibling, previousSibling,

parentNode
• methods:

• getElementById, getElementsByTagName, querySelector, querySelec
torAll, getAttribute, hasAttribute,hasChildNodes

• appendChild, insertBefore, removeChild, replaceChild
• full reference

http://www.w3schools.com/dom/dom_methods.asp

Schemas and Doctypes
• "rule books" describing which tags/attributes you want to allow in your data

• used to validate XML files to make sure they follow the rules of that "flavor"

• the W3C HTML validator uses an HTML schema to validate your HTML (related
to <!DOCTYPE html> tag)

• these are optional; if you don't have one, there are no rules beyond having well-
formed XML syntax

• for more info:

• W3C XML Schema

• Document Type Definition (DTD) ("doctype")

http://en.wikipedia.org/wiki/XML_Schema_(W3C)
http://en.wikipedia.org/wiki/Document_Type_Definition

Exercise: Late day distribution

• Write a program that shows how many students turn homework in late for each
assignment.

• Data service
here: http://webster.cs.washington.edu/cse154/hw/hw.php
• parameter: assignment=hwN

http://webster.cs.washington.edu/cse154/hw/hw.php?assignment=hw1

