
CSE 154
LECTURE 12: COOKIES

Including files: include
include("filename"); PHP

include("header.html");

include("shared-code.php"); PHP

• inserts the entire contents of the given file into the PHP script's output page

• encourages modularity

• useful for defining reused functions needed by multiple pages

• related: include_once, require, require_once

Including a common HTML file
<!DOCTYPE html>

<!-- this is top.html -->

<html><head><title>This is some common code</title>

... HTML

include("top.html"); # this PHP file re-uses top.html's HTML content

• Including a .html file injects that HTML output into your PHP page at that
point

• useful if you have shared regions of pure HTML tags that don't contain any
PHP content

Including a common PHP file
<?php
this is common.php
function useful($x) { return $x * $x; }

function top() {
?>
<!DOCTYPE html>
<html><head><title>This is some common code</title>
...
<?php

} PHP

include("common.php"); # this PHP file re-uses common.php's PHP code

$y = useful(42); # call a shared function

top(); # produce HTML output

...

• including a .php file injects that PHP code into your PHP file at that point
• if the included PHP file contains functions, you can call them

Stateful client/server interaction
Sites like amazon.com seem to "know
who I am." How do they do this? How
does a client uniquely identify itself to
a server, and how does the server
provide specific content to each client?

• HTTP is a stateless protocol; it
simply allows a browser to request a
single document from a web server

• today we'll learn about pieces of data called cookies used to work around this
problem, which are used as the basis of higher-level sessions between clients
and servers

What is a cookie?
• cookie: a small amount of information sent by a
server to a browser, and then sent back by the
browser on future page requests

• cookies have many uses:
• authentication

• user tracking

• maintaining user preferences, shopping carts, etc.

• a cookie's data consists of a single name/value pair,
sent in the header of the client's HTTP GET or POST
request

http://en.wikipedia.org/wiki/HTTP_cookie

How cookies are sent
• when the browser
requests a page, the server
may send back a cookie(s)
with it

• if your server has
previously sent any cookies
to the browser, the browser
will send them back on
subsequent requests

• alternate model: client-
side JavaScript code can
set/get cookies

Myths about cookies
• Myths:
• Cookies are like worms/viruses and can erase data from the user's hard disk.

• Cookies are a form of spyware and can steal your personal information.

• Cookies generate popups and spam.

• Cookies are only used for advertising.

• Facts:
• Cookies are only data, not program code.

• Cookies cannot erase or read information from the user's computer.

• Cookies are usually anonymous (do not contain personal information).

• Cookies CAN be used to track your viewing habits on a particular site.

A "tracking cookie"

• an advertising company can put a cookie on your machine when you visit one
site, and see it when you visit another site that also uses that advertising
company

• therefore they can tell that the same person (you) visited both sites

• can be thwarted by telling your browser not to accept "third-party cookies"

Where are the cookies on my computer?
• IE: HomeDirectory\Cookies

•e.g. C:\Documents and Settings\jsmith\Cookies
•each is stored as a .txt file similar to the site's domain name

• Chrome:
C:\Users\username\AppData\Local\Google\Chrome\User Data\Default

• Firefox: HomeDirectory\.mozilla\firefox\???.default\cookies.txt
•view cookies in Firefox preferences: Privacy, Show Cookies...

How long does a cookie exist?
• session cookie : the default type; a temporary cookie that is stored only in the
browser's memory

• when the browser is closed, temporary cookies will be erased

• can not be used for tracking long-term information

• safer, because no programs other than the browser can access them

• persistent cookie : one that is stored in a file on the browser's computer
• can track long-term information

• potentially less secure, because users (or programs they run) can open cookie
files, see/change the cookie values, etc.

Setting a cookie in PHP
setcookie("name", "value"); PHP

setcookie("username", “allllison");

setcookie("age", 19); PHP

• setcookie causes your script to send a cookie to the user's browser

• setcookie must be called before any output statements (HTML
blocks, print, or echo)

• you can set multiple cookies (20-50) per user, each up to 3-4K bytes

• by default, the cookie expires when browser is closed (a "session cookie")

http://php.net/setcookie

Retrieving information from a cookie
$variable = $_COOKIE["name"]; # retrieve value of the cookie

if (isset($_COOKIE["username"])) {

$username = $_COOKIE["username"];

print("Welcome back, $username.\n");

} else {

print("Never heard of you.\n");

}

print("All cookies received:\n");

print_r($_COOKIE); PHP

• any cookies sent by client are stored in $_COOKIES associative array

• use isset function to see whether a given cookie name exists

http://php.net/isset

Expiration / persistent cookies
setcookie("name", "value", expiration); PHP

$expireTime = time() + 60*60*24*7; # 1 week from now

setcookie("CouponNumber", "389752", $expireTime);

setcookie("CouponValue", "100.00", $expireTime); PHP

• to set a persistent cookie, pass a third parameter for when it should expire

• indicated as an integer representing a number of seconds, often relative to current
timestamp

• if no expiration passed, cookie is a session cookie; expires when browser is closed

• time function returns the current time in seconds

• date function can convert a time in seconds to a readable date

http://courses.cs.washington.edu/courses/cse154/14sp/lectures/slides/>http:/php.net/time
http://php.net/manual/en/function.date.php

Deleting a cookie
setcookie("name", FALSE); PHP

setcookie("CouponNumber", FALSE); PHP

• setting the cookie to FALSE erases it

• you can also set the cookie but with an expiration that is before the present
time:

setcookie("count", 42, time() - 1); PHP

• remember that the cookie will also be deleted automatically when it expires,
or can be deleted manually by the user by clearing their browser cookies

Clearing cookies in your browser
• Chrome: Wrench → History → Clear all browsing data...
• Firefox: Firefox menu → Options → Privacy → Show Cookies... → Remove

(All) Cookies

Common cookie bugs
When you call setcookie, the cookie will be available in $_COOKIE on
the next page load, but not the current one. If you need the value during the
current page request, also store it in a variable:

setcookie("name", "joe");

print $_COOKIE["name"]; # undefined PHP

$name = "joe";

setcookie("name", $name);

print $name; # joe PHP

• setcookie must be called before your code prints any output or HTML content:

<!DOCTYPE html><html>

<?php

setcookie("name", "joe"); # should precede HTML content!

